Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-20T08:30:46.905Z Has data issue: true hasContentIssue false

Weather conditions at Timau National Observatory from ERA5

Published online by Cambridge University Press:  23 September 2024

Rhorom Priyatikanto*
Affiliation:
Research Centre for Space, National Research and Innovation Agency, Bandung, Indonesia School of Geography and Environmental Science, University of Southampton, Southampton, UK
Agustinus Gunawan Admiranto
Affiliation:
Research Centre for Space, National Research and Innovation Agency, Bandung, Indonesia
Thomas Djamaluddin
Affiliation:
Research Centre for Space, National Research and Innovation Agency, Bandung, Indonesia
Abdul Rachman
Affiliation:
Research Centre for Space, National Research and Innovation Agency, Bandung, Indonesia Timau National Observatory, National Research and Innovation Agency, Bandung, Indonesia
Dudy Wijaya
Affiliation:
Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
*
Corresponding author: Rhorom Priyatikanto; Email: [email protected].

Abstract

A new observatory site should be investigated for its local climate conditions to see its potential and limitations. In this respect, we examine several meteorological parameters at the site of Timau National Observatory, Indonesia using the ERA5 dataset from 2002 to 2021. Based on this dataset, we conclude that the surface temperature at Timau is around $18.9^{\circ}$C with relatively small temperature variation ($\sim$$1.5^{\circ}$C) over the day. This temperature stability is expected to give advantages to the observatory. In terms of humidity and water vapour, Timau is poor for infrared observations as the median precipitable water vapour exceeds 18 mm, even during the dry season. However, near-infrared observations are feasible. Even though our cloud cover analysis confirms the span of the observing season in the region, we find a significant discrepancy between the clear sky fraction derived from the ERA5 dataset and the one estimated using satellite imagery. Aside from the indicated bias, our results provide insights and directions for the operation and future development of the observatory.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Joint first authors

References

Abbot, H. J., Munro, J., Travouillon, T., Lidman, C., & Tucker, B. E. 2021, PASP, 133, 095001.Google Scholar
Aksaker, N., Yerli, S. K., Erdoğan, M., Kurt, Z., Kaba, K., Bayazit, M., & Yesilyaprak, C. 2020, MNRAS, 493, 1204.Google Scholar
Alifdini, I., Shimada, T., & Wirasatriya, A. 2021, IJC, 41, 4825.Google Scholar
Blaauw, A. 1989, Msngr, 56, 21.Google Scholar
Blaauw, A. 1991, JHA, 22, 87.Google Scholar
Bolbasova, L. A., Shikhovtsev, A. Y., & Ermakov, S. A. 2023, MNRAS, 520, 4336.Google Scholar
Chand, S. S., et al. 2019, WIRCC, 10, e602.Google Scholar
Coulman, C. E. 1985, ARA&A, 23, 19.Google Scholar
Garcia-Lorenzo, B., Eff-Darwich, A., Castro-Almazan, J., Pinilla-Alonso, N., Munoz-Tunon, C., & Rodriguez-Espinosa, J. M. 2010, MNRAS, 405, 2683.Google Scholar
Haslebacher, C., Demory, M.-E., Demory, B.-O., Sarazin, M., & Vidale, P. L. 2022, A&A, 665, A149.Google Scholar
Hellemeier, M. S., Yang, R., & Hickson, P. 2019, MNRAS, 482, 4941.Google Scholar
Herawati, H., & Santoso, H. 2011, FPE, 13, 227.Google Scholar
Hersbach, H., et al. 2020, QJRMS, 146, 1999.Google Scholar
Hidalgo, S. L., Munoz-Tunon, C., Castro-Almazan, J. A., & Varela, A. M. 2021, PASP, 133, 105002.Google Scholar
Hidayat, T., Mahasena, P., Dermawan, B., Hadi, T. W., Premadi, P. W., & Herdiwijaya, D. 2012, MNRAS, 427, 1903.Google Scholar
Hoyer, S., & Hamman, J. 2017, JORS, 5, 10.Google Scholar
Huang, L., Mo, Z., Liu, L., Zeng, Z., Chen, J., Xiong, S., & He, H. 2021, ESS, 8, e2020EA001516.Google Scholar
Huda, I. N., et al. 2021, ExA, 52, 141.Google Scholar
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. J. S. 2015, NatCo, 6, 7537.Google Scholar
Kidger, M. R., Rodriguez-Espinosa, J. M., del Rosario, J. C., & Trancho, G. 1998, NewAR, 42, 537.Google Scholar
Kurita, M., et al. 2020, PASJ, 72, 48.Google Scholar
Lederer, S. M., Buckalew, B. B., & Hickson, P. 2019, in First International Orbital Debris Conference, Vol. 2109, 6039, LPI Contributions.Google Scholar
Lei, Y., Letu, H., Shang, H., & Shi, J. 2020, CD, 54, 2941.Google Scholar
Li, M.-S., Li, R., Wang, N., & Zheng, X.-W. 2020, RAA, 20, 200.Google Scholar
Lombardi, G., Zitelli, V., & Ortolani, S. 2009, MNRAS, 399, 783.Google Scholar
Mulyana, E., Bayu Rizky Prayoga, M., Yananto, A., Wirahma, S., Aldrian, E., Harsoyo, B., Handoko Seto, T., & Sunarya, Y. 2018, in Matec Web of Conferences, Vol. 229, EDP Sciences, 02007.Google Scholar
Mumpuni, E. S., Puspitarini, L., Priyatikanto, R., Yatini, C. Y., & Putra, M. 2018, NatAs, 2, 930.Google Scholar
Ningombam, S. S., Song, H. J., Mugil, S. K., Dumka, U. C., Larson, E. J. L., Kumar, B., & Sagar, R. 2021, MNRAS, 507, 3745.Google Scholar
Priyatikanto, R., Mumpuni, E. S., Hidayat, T., Saputra, M. B., Murti, M. D., Rachman, A., & Yatini, C. Y. 2023, MNRAS, 518, 4073.Google Scholar
Pujiono, E., Sadono, R., Hartono, & Imron, M. A. 2019, JMS, 16, 2215.Google Scholar
Putri, N. S. E., Wijaya, D. D., Abdillah, M. R., Tanuwijaya, Z. A. J., Wibowo, S. T., & Kuntjoro, W. 2023, NH, 1.Google Scholar
Radu, A. A., et al. 2012, MNRAS, 422, 2262.Google Scholar
Reddy, C. S., & Sarika, N. 2022, SIR, 30, 617.Google Scholar
Sarazin, M. 1990, in New Windows to the Universe, ed. Sanchez, F., & Vazquez, M., 435.Google Scholar
Senande-Rivera, M., Insua-Costa, D., & Miguez-Macho, G. 2022, NatCo, 13, 1208.Google Scholar
Shikhovtsev, A. Y., Kovadlo, P. G., Kopylov, E. A., Ibrahimov, M. A., & Xuan, H. L. 2021, Atmosphere, 12, 1680.Google Scholar
Stanton, E. T., & Arthur, C. B. 1984, JCAM, 23, 124.Google Scholar
Tapia, M., Hiriart, D., Richer, M., & Cruz-Gonzalez, I. 2007, RMxAA, 31, 47.Google Scholar
Tillayev, Y., Azimov, A., Ehgamberdiev, S., & Ilyasov, S. 2023, Atmosphere, 14, 199.Google Scholar
Vernin, J., et al. 2011, PASP, 123, 1334.Google Scholar
Wang, X.-Y., Wu, Z.-Y., Liu, J., & Hidayat, T. 2022, MNRAS, 511, 5363.Google Scholar
Wijaya, D. D., Putri, N. S. E., Utama, A. K., Wibowo, S. T., & Sadarviana, V. 2024, ASR, 73, 386.Google Scholar
Zhang, J.-C., Ge, L., Lu, X.-M., Cao, Z.-H., Chen, X., Mao, Y.-N., & Jiang, X.-J. 2015, PASP, 127, 1292.Google Scholar
Zhu, L., Zhang, H., Sun, G., Li, X., Yang, F., He, F., Weng, N., & Deng, L. 2023, MNRAS, 522, 1419.Google Scholar