Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T05:32:24.776Z Has data issue: false hasContentIssue false

The Dark Matter filament between Abell 222/223*

Published online by Cambridge University Press:  12 October 2016

Jörg P. Dietrich
Affiliation:
Universitäts-Sternwarte München, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 München, Germany email: [email protected]
Norbert Werner
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA
Douglas Clowe
Affiliation:
Dept. of Physics & Astronomy, Ohio University, Clippinger Lab 251B, Athens, OH 45701, USA
Alexis Finoguenov
Affiliation:
Max-Planck-Institut fur extraterrestrische Physik, Giessenbachstraße, 85748 Garching b. München, Germany
Tom Kitching
Affiliation:
Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, U.K.
Lance Miller
Affiliation:
Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, U.K.
Aurora Simionescu
Affiliation:
Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

Type
Contributed Papers
Copyright
Copyright © The Authors 2017 

Footnotes

*

The copyright line contained an error. This has now been corrected in the online version, with an additional correction notice published.

References

Allen, S. W., Rapetti, D. A., Schmidt, R. W., et al. 2008, Mon. Not. R. Astron. Soc., 383, 879 Google Scholar
Aragón-Calvo, M. A., van de Weygaert, R., & Jones, B. J. T. 2010, Mon. Not. R. Astron. Soc., 408, 2163 Google Scholar
Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Nature, 380, 603 Google Scholar
Buote, D. A., Zappacosta, L., Fang, T., et al. 2009, Astrophys. J., 695, 1351 CrossRefGoogle Scholar
Colberg, J. M., Krughoff, K. S., & Connolly, A. J. 2005, Mon. Not. R. Astron. Soc., 359, 272 Google Scholar
Davé, R., Cen, R., Ostriker, J. P., et al. 2001, Astrophys. J., 552, 473 Google Scholar
Dietrich, J. P., Clowe, D. I., & Soucail, G. 2002, Astron. Astrophys., 394, 395 Google Scholar
Dietrich, J. P., Schneider, P., Clowe, D., Romano-Díaz, E., & Kerp, J. 2005, Astron. Astrophys., 440, 453 Google Scholar
Dietrich, J. P., Werner, N., Clowe, D., et al. 2012, Nature, 487, 202 Google Scholar
Dolag, K., Bartelmann, M., Perrotta, F., et al. 2004, Astron. Astrophys., 416, 853 CrossRefGoogle Scholar
Fang, T., Buote, D. A., Humphrey, P. J., et al. 2010, Astrophys. J., 714, 1715 Google Scholar
Gavazzi, R., Mellier, Y., Fort, B., Cuillandre, J.-C., & Dantel-Fort, M. 2004, Astron. Astrophys., 422, 407 Google Scholar
Geller, M. J. & Huchra, J. P. 1989, Science, 246, 897 Google Scholar
Gray, M. E., Taylor, A. N., Meisenheimer, K., et al. 2002, Astrophys. J., 568, 141 Google Scholar
Heymans, C., Gray, M. E., Peng, C. Y., et al. 2008, Mon. Not. R. Astron. Soc., 385, 1431 Google Scholar
Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, Astron. Astrophys., 457, 841 Google Scholar
Joeveer, M., Einasto, J., & Tago, E. 1978, Mon. Not. R. Astron. Soc., 185, 357 Google Scholar
Kahn, F. D. & Woltjer, L. 1959, Astrophys. J., 130, 705 Google Scholar
Kaiser, N., Wilson, G., Luppino, G., et al. 1998, astro-ph/9809268Google Scholar
King, I. R. 1966, Astron. J., 71, 64 Google Scholar
Kitching, T. D., Miller, L., Heymans, C. E., van Waerbeke, L., & Heavens, A. F. 2008, Mon. Not. R. Astron. Soc., 390, 149 Google Scholar
Mead, J. M. G., King, L. J., & McCarthy, I. G. 2010, Mon. Not. R. Astron. Soc., 401, 2257 CrossRefGoogle Scholar
Miller, L., Kitching, T. D., Heymans, C., Heavens, A. F., & van Waerbeke, L. 2007, Mon. Not. R. Astron. Soc., 382, 315 Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, Astrophys. J., 490, 493 Google Scholar
Sandage, A. 1986, Astrophys. J., 307, 1 CrossRefGoogle Scholar
Simionescu, A., Allen, S. W., Mantz, A., et al. 2011, Science, 331, 1576 Google Scholar
Werner, N., Finoguenov, A., Kaastra, J. S., et al. 2008, Astron. Astrophys., 482, L29 Google Scholar