A diffeomorphism $f$ has a heterodimensional cycle if there are (transitive) hyperbolic sets $\varLambda$ and $\varSigma$ having different indices (dimension of the unstable bundle) such that the unstable manifold of $\varLambda$ meets the stable one of $\varSigma$ and vice versa. This cycle has co-index $1$ if $\mathop{\mathrm{index}}(\varLambda)=\mathop{\mathrm{index}}(\varSigma)\pm1$. This cycle is robust if, for every $g$ close to $f$, the continuations of $\varLambda$ and $\varSigma$ for $g$ have a heterodimensional cycle.
We prove that any co-index $1$ heterodimensional cycle associated with a pair of hyperbolic saddles generates $C^1$-robust heterodimensioal cycles. Therefore, in dimension three, every heterodimensional cycle generates robust cycles.
We also derive some consequences from this result for $C^1$-generic dynamics (in any dimension). Two of such consequences are the following. For tame diffeomorphisms (generic diffeomorphisms with finitely many chain recurrence classes) there is the following dichotomy: either the system is hyperbolic or it has a robust heterodimensional cycle. Moreover, any chain recurrence class containing saddles having different indices has a robust cycle.