Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T14:53:02.598Z Has data issue: false hasContentIssue false

Glassy materials with enhanced thermal stability

Published online by Cambridge University Press:  10 January 2017

P. Boolchand
Affiliation:
Department of ECS, College of Engineering and Applied Science, University of Cincinnati, USA; [email protected]
B. Goodman
Affiliation:
Department of Physics, University of Cincinnati, USA; [email protected]
Get access

Abstract

The nature of glass transitions in chalcogenides and modified oxides depends on the network mean coordination number $\langle r\rangle$. These display systematic trends when spanning across the three topological phases: flexible, intermediate, and stressed-rigid. Trends in the glass-transition temperature Tg($\langle r\rangle$) show a monotonic increase with $\langle r\rangle$, but the nonreversing enthalpy of relaxation at Tg, ΔHnr($\langle r\rangle$), shows a deep- and square-well-like minimum with the walls representing the rigidity and stress transitions with increasing $\langle r\rangle$, respectively. In the well, the ΔHnr($\langle r\rangle$) term remains minuscule (∼0) corresponding to the isostatically rigid intermediate phase (IP). The melt fragility index (m) shows rather low values, m($\langle r\rangle$) < 20 for IP compositions, but increases outside the IP. Glass compositions in the IP show absence of network stress, form compacted networks, possess thermally reversing glass transitions, and display high glass-forming tendency—functionalities that have attracted widespread interest in understanding the physics of glasses and applications of the new IP formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Phillips, J.C., J. Non Cryst. Solids 34, 153 (1979).Google Scholar
Maxwell, J.C., Philos. Mag. 27, 294 (1864).Google Scholar
Thorpe, M.F., J. Non Cryst. Solids 57, 355 (1983).Google Scholar
Selvanathan, D., Bresser, W.J., Boolchand, P., Phys. Rev. B Condens. Matter 61, 15061 (2000).Google Scholar
Feng, X.W., Bresser, W.J., Boolchand, P., Phys. Rev. Lett. 78, 4422 (1997).Google Scholar
Boolchand, P., Georgiev, D.G., Goodman, B., J. Optoelectron. Adv. Mater. 3, 703 (2001).Google Scholar
Bhosle, S., Gunasekera, K., Boolchand, P., Micoulaut, M., Int. J. Appl. Glass Sci. 3, 205 (2012).Google Scholar
Wang, F., Mamedov, S., Boolchand, P., Goodman, B., Chandrasekhar, M., Phys. Rev. B Condens. Matter 71, 174201 (2005).Google Scholar
Boolchand, P., Jin, M., Novita, D.I., Chakravarty, S., J. Raman Spectrosc. 38, 660 (2007).Google Scholar
Chakraborty, S., Boolchand, P., J. Phys. Chem. B 118, 2249 (2014).Google Scholar
Bhageria, R., Gunasekera, K., Boolchand, P., Micoulaut, M., Phys. Status Solidi B 251, 1322 (2014).Google Scholar
Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., Martin, S.W., J. Appl. Phys. 88, 3113 (2000).Google Scholar
Thomas, L.C., Modulated DSC Technology (MSDC-2006) (TA Instruments, New Castle, DE, 2006).Google Scholar
Mantisi, B., Bauchy, M., Micoulaut, M., Phys. Rev. B Condens. Matter 92, 134201 (2015).Google Scholar
Bhosle, S., Gunasekera, K., Boolchand, P., Micoulaut, M., Int. J. Appl. Glass Sci. 3, 189 (2012).Google Scholar
Gunasekera, K., Bhosle, S., Boolchand, P., Micoulaut, M., J. Chem. Phys. 139, (2013).Google Scholar
Carpentier, L., Bustin, O., Descamps, M., J. Phys. D Appl. Phys. 35, 402 (2002).Google Scholar
Angell, C.A., Macfarlane, D.R., Oguni, M., Ann. N.Y. Acad. Sci. 484, 241 (1986).Google Scholar
Zhang, M., Boolchand, P., Science 266, 1355 (1994).Google Scholar
Vaills, Y., Qu, T., Micoulaut, M., Chaimbault, F., Boolchand, P., J. Phys. Condens. Matter 17, 4889 (2005).Google Scholar
Mauro, J.C., Gupta, P.K., Loucks, R.J., J. Chem. Phys. 130, 234503 (2009).Google Scholar
Micoulaut, M., Adv. Phys. X 1,147 (2016).Google Scholar
Mauro, J.C., Am. Ceram. Soc. Bull. 90, 31 (2011).Google Scholar
Bauchy, M., Micoulaut, M., Celino, M., Le Roux, S., Boero, M., Massobrio, C., Phys. Rev. B Condens. Matter 84, 054201 (2011).Google Scholar
Chakraborty, S., Boolchand, P., Malki, M., Micoulaut, M., J. Chem. Phys. 140, 014503 (2014).Google Scholar
Novita, D.I., Boolchand, P., Malki, M., Micoulaut, M., J. Phys. Condens. Matter 21, 205106 (2009).Google Scholar
Vignarooban, K., Boolchand, P., Micoulaut, M., Malki, M., Bresser, W.J., Europhys. Lett. 108, 56001 (2014).Google Scholar
Holbrook, C., Chakraborty, S., Ravindren, S., Boolchand, P., Goldstein, J.T., Stutz, C.E., J. Chem. Phys. 140, 144506 (2014).Google Scholar
Yildirim, C., Raty, J.Y., Micoulaut, M., Nat. Commun. 7, 11086 (2016).Google Scholar