Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:21:38.609Z Has data issue: false hasContentIssue false

Enriques surfaces and an Apollonian packing in eight dimensions

Published online by Cambridge University Press:  11 July 2022

Arthur Baragar*
Affiliation:
Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154-4020, USA E-mail: [email protected]

Abstract

We call a packing of hyperspheres in n dimensions an Apollonian sphere packing if the spheres intersect tangentially or not at all; they fill the n-dimensional Euclidean space; and every sphere in the packing is a member of a cluster of $n+2$ mutually tangent spheres (and a few more properties described herein). In this paper, we describe an Apollonian packing in eight dimensions that naturally arises from the study of generic nodal Enriques surfaces. The $E_7$ , $E_8$ and Reye lattices play roles. We use the packing to generate an Apollonian packing in nine dimensions, and a cross section in seven dimensions that is weakly Apollonian. Maxwell described all three packings but seemed unaware that they are Apollonian. The packings in seven and eight dimensions are different than those found in an earlier paper. In passing, we give a sufficient condition for a Coxeter graph to generate mutually tangent spheres and use this to identify an Apollonian sphere packing in three dimensions that is not the Soddy sphere packing.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allcock, D., Congruence subgroups and Enriques surface automorphisms, J. Lond. Math. Soc. (2), 98(1) (2018), 111, ISSN: 0024-6107, Review: MR 3847229, doi: 10.1112/jlms.12113.Google Scholar
Baragar, A., The Apollonian circle packing and ample cones for K3 surfaces, arXiv:1708.06061, to appear (2017).Google Scholar
Baragar, A., The Neron-Tate pairing and elliptic K3 surfaces, arXiv:1708.05998, to appear (2017).Google Scholar
Baragar, A., Higher dimensional Apollonian packings, revisited, Geom. Dedicata, 195 (2018), 137–161, ISSN: 0046-5755, Review: MR 3820499, doi: 10.1007/s10711-017-0280-7.Google Scholar
Baragar, A., Apollonian packings in seven and eight dimensions, Aequationes Math., 96(1) (2022), 147–165, ISSN: 0001-9054, Review: MR 4379999, doi: 10.1007/s00010-021-00792-z.CrossRefGoogle Scholar
Boyd, D. W., A new class of infinite sphere packings, Pacific J. Math., 50 (1974), 383–398, ISSN: 0030-8730, Review: MR 0350626.Google Scholar
Chen, H. and Labbé, J.-P., Lorentzian Coxeter systems and Boyd-Maxwell ball packings, Geom. Dedicata, 174 (2015), 43–73, ISSN: 0046-5755, Review: MR 3303040, doi: 10.1007/s10711-014-0004-1.CrossRefGoogle Scholar
Coble, A. B., The Ten Nodes of the Rational Sextic and of the Cayley Symmetroid, Amer. J. Math., 41(4) (1919), 243265, ISSN: 0002-9327, Review: MR 1506391, doi: 10.2307/2370285.CrossRefGoogle Scholar
Cossec, F. R. and Dolgachev, I. V., Enriques surfaces. I, Progress in Mathematics, vol. 76 (Birkhäuser Boston, Inc., Boston, MA, 1989), x+397, ISBN: 0-8176-3417-7, Review: MR 986969, doi: 10.1007/978-1-4612-3696-2.Google Scholar
Dolgachev, I., Orbital counting of curves on algebraic surfaces and sphere packings, in K3 surfaces and their moduli, (Springer International Publishing, Cham, 2016), 1753, ISBN: 978-3-319-29959-4, doi: 10.1007/978-3-319-29959-4_2.CrossRefGoogle Scholar
article I. V. Dolgachev, A brief introduction to Enriques surfaces, in Development of moduli theory—Kyoto 2013, Adv. Stud. Pure Math., vol. 69, (Math. Soc. Japan, [Tokyo],, 2016), 132, Review: MR 3586505Google Scholar
Graham, R. L., Lagarias, J. C., Mallows, C. L., Wilks, A. R. and Yan, C. H., Apollonian circle packings: geometry and group theory. II. Super-Apollonian group and integral packings, Discrete Comput. Geom., 35(1) (2006), 1–36, ISSN: 0179-5376, Review: MR 2183489, doi: 10.1007/s00454-005-1195-x.Google Scholar
Kontorovich, A., Nakamura, K., Geometry and arithmetic of crystallographic sphere packings, Proc. Natl. Acad. Sci. USA, 116(2) (2019), 436–441, ISSN:1091-6490, Review: MR 3904690, doi: 10.1073/pnas.1721104116.CrossRefGoogle Scholar
Kovács, S. J., The cone of curves of a K3 surface, Math. Ann., 300(4), (1994), 681691, ISSN: 0025-5831, Review: MR 1314742, doi: 10.1007/BF01450509.CrossRefGoogle Scholar
Lagarias, J. C., Mallows, C. L. and Wilks, A. R., Beyond the Descartes circle theorem, Amer. Math. Monthly, 109(4), (2002), 338361, ISSN: 0002-9890, Review: MR 1903421, doi: 10.2307/2695498.CrossRefGoogle Scholar
Maxwell, G., Sphere packings and hyperbolic reflection groups, J. Algebra, 79(1) (1982), 78–97, ISSN: 0021-8693, Review: MR 679972, doi: 10.1016/0021-8693(82)90318-0.CrossRefGoogle Scholar
Melzak, Z. A., Infinite packings of disks, Canadian J. Math., 18 (1966), 838–852, ISSN: 0008-414X, Review: MR 203594, doi: 10.4153/CJM-1966-084-8.CrossRefGoogle Scholar
D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math., 75(1) (1984), 105121, ISSN: 0020-9910, Review: MR 728142, doi: 10.1007/BF01403093.Google Scholar
Ratcliffe, J. G., Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, 2nd edition, (Springer, New York, 2006), xii+779, ISBN: 978-0387-33197-3, Review: MR 2249478.Google Scholar
Soddy, F., The bowl of integers and the hexlet, Nature, 139 (1937), 7779, doi: 10.1038/139077a0.Google Scholar
Sullivan, D., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153(3–4) (1984), 259277, ISSN: 0001-5962, Review: MR 766265, doi: 10.1007/BF02392379.CrossRefGoogle Scholar
Viazovska, M. S., The sphere packing problem in dimension 8, Ann. Math. (2), 185(3) (2017), 991–1015, ISSN: 0003-486X, Review: MR 3664816, doi: 10.4007/annals.2017.185.3.7.Google Scholar
Vinberg, È. B., The groups of units of certain quadratic forms, Mat. Sb. (N.S.), 87(129) (1972), 1836, Review: MR 0295193.Google Scholar