Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T05:15:19.440Z Has data issue: false hasContentIssue false

Does idiosyncratic risk matter for climate policy?

Published online by Cambridge University Press:  02 November 2022

Richard Jaimes*
Affiliation:
Department of Economics, Pontificia Universidad Javeriana, Carrera 7 # 40 - 36, Bogotá, Colombia
*
*Corresponding author. E-mail: [email protected]

Abstract

This paper studies the implications of distortions in intertemporal margins for the conduct of climate policy. We do so by introducing a framework that combines a standard two-period overlapping generations (OLG) model with a tractable model of household heterogeneity, in which over-accumulation of capital arises from uninsurable idiosyncratic labor income risk. We illustrate that market-based climate policies must be adjusted when the government cannot provide full insurance to households by taxing only capital and is constrained to transfer resources across generations for risk-sharing. In a numerical exercise, we find that idiosyncratic risk leads to an optimal capital income tax rate of 35 per cent and a carbon price 7.5 per cent lower than its first best.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiyagari, SR (1995) Optimal capital income taxation with incomplete market, borrowing constraints, and constant discounting. Journal of Political Economy 103, 11581175.CrossRefGoogle Scholar
Barrage, L (2014) Sensitivity analysis for golosov, hassler, krusell and tsyvinski (2014): ‘optimal taxes on fossil fuel in general equilibrium’. Econometrica 82, 4188. Econometrica Supplementary material.Google Scholar
Barrage, L (2018) Be careful what you calibrate for: social discounting in general equilibrium. Journal of Public Economics 160, 3349.CrossRefGoogle Scholar
Barrage, L (2020) Optimal dynamic carbon taxes in a climate-economy model with distortionary fiscal policy. Review of Economic Studies 87, 139.Google Scholar
Belfiori, ME (2017) Carbon pricing, carbon sequestration and social discounting. European Economic Review 96, 117.CrossRefGoogle Scholar
Caldeira, K and Myhrvold, NP (2013) Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environmental Research Letters 8, 034039.CrossRefGoogle Scholar
Chiroleu-Assouline, M and Fodha, M (2011) Environmental tax and the distribution of income among heteregeneous workers. Annals of Economics and Statistics 103/104, 7192.10.2307/41615494CrossRefGoogle Scholar
Chiroleu-Assouline, M and Fodha, M (2014) From regressive pollution taxes to progressive environmental tax reforms. European Economic Review 69, 126142.CrossRefGoogle Scholar
de la Croix, D and Michel, P (2002) A Theory of Economic Growth: Dynamics and Policy in Overlapping Generations. 1st edn. Cambridge University Press, pp. 82–84, Chapter 2.CrossRefGoogle Scholar
Eggertsson, GB, Mehrotra, NR and Robbins, JA (2019) A model of secular stagnation: theory and quantitative evaluation. American Economic Journal: Macroeconomics 11, 148.Google Scholar
Erosa, A and Gervais, M (2002) Optimal taxation in life-cycle economies. Journal of Economy Theory 105, 338369.10.1006/jeth.2001.2877CrossRefGoogle Scholar
Gerlagh, R, Jaimes, R and Motavasseli, A (2017) Global demographic change and climate policies. CESifo Working Paper No. 6617.Google Scholar
Gerlagh, R and Liski, M (2018a) Carbon prices for the next hundred years. The Economic Journal 128, 728757.CrossRefGoogle Scholar
Gerlagh, R and Liski, M (2018b) Consistent climate policies. Journal of the European Economic Association 16, 144.CrossRefGoogle Scholar
Golosov, M, Hassler, J, Krusell, P and Tsyvinski, A (2014) Optimal taxes on fossil fuel in general equilibrium. Econometrica 82, 4188.Google Scholar
Gottardi, P, Kajii, A and Nakajima, T (2015) Optimal taxation and debt with uninsurable risks to human capital accumulation. American Economic Review 105, 34433470.CrossRefGoogle Scholar
Harenberg, D and Ludwig, A (2015) Social security in an analytically tractable overlapping generations model with aggregate and idiosyncratic risk. International Tax and Public Finance 22, 579603.CrossRefGoogle Scholar
Hiraguchi, R and Shibata, A (2015) Taxing capital is a good idea: the role of idiosyncratic risk in an olg model. Journal of Economic Dynamics & Control 52, 258269.CrossRefGoogle Scholar
Hoffmann, F, Inderst, R and Moslener, U (2017) Taxing externalities under financing constraints. The Economic Journal 127, 24782503.CrossRefGoogle Scholar
Iverson, T and Karp, L (2021) Carbon taxes and climate commitment with non-constant time preference. Review of Economic Studies 88, 764799.CrossRefGoogle Scholar
Jacobs, B and de Mooij, RA (2015) Pigou meets mirrless: on the irrelevance of tax distortions for the second-best pigouvian tax. Journal of Environmental Economics and Management 71, 90108.CrossRefGoogle Scholar
Jaimes, R (2021) Optimal climate and fiscal policy in an olg economy. Vniversitas Económica Working Paper (21)3.Google Scholar
Joos, F, Roth, R, Fuglestvedt, JS, Peters, GP, Enting, IG, von Bloh, W, Brovkin, V, Burke, EJ, Eby, M, Edwards, NR, Friedrich, T, Frölicher, TL, Halloran, PR, Holden, PB, Jones, C, Kleinen, T, Mackenzie, FT, Matsumoto, K, Meinshausen, M, Plattner, G-K, Reisinger, A, Segschneider, J, Shaffer, G, Steinacher, M, Strassmann, K, Tanaka, K, Timmermann, A and Weaver, AJ (2013) Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmospheric Chemistry and Physics 13, 27932825.CrossRefGoogle Scholar
Kaplow, L (2012) Optimal control of externalities in the presence of income taxation. International Economic Review 53, 487509.CrossRefGoogle Scholar
ten Kate, F and Milionis, P (2019) Is capital taxation always harmful for economic growth?. International Tax and Public Finance 26, 758805.CrossRefGoogle Scholar
Krueger, D, Ludwig, A and Villalvazo, S (2021) Optimal taxes on capital in the olg model with uninsurable idiosyncratic income risk. Journal of Public Economics 201, 114.CrossRefGoogle Scholar
Lucas, REJ and Stokey, N (1983) Optimal fiscal and monetary policy in an economy without capital. Journal of Monetary Economies 12, 5593.CrossRefGoogle Scholar
Marrouch, W and Sinclair-Desgagné, B (2012) Emission taxes when pollution depends on location. Environment and Development Economics 17, 433443.CrossRefGoogle Scholar
Nordhaus, W (2008) A question of balance: weighing the options on global warming policies. New Haven, CT: Yale University Press.Google Scholar
Nordhaus, W (2017) Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences of the United States of America 114, 15181523.CrossRefGoogle ScholarPubMed
Rezai, A and van der Ploeg, F (2015) Robustness of a simple rule for the social cost of carbon. Economics Letters 132, 4855.CrossRefGoogle Scholar
Stern, N (2007) The Economics of Climate Change: The Stern Review. Cambridge, U.K.: Cambrigde University Press.CrossRefGoogle ScholarPubMed
Tideman, TN and Plassmann, F (2010) Pricing externalities. European Journal of Political Economy 26, 176184.CrossRefGoogle Scholar
Trabandt, M and Uhlig, H (2011) The laffer curve revisited. Journal of Monetary Economics 58, 305327.CrossRefGoogle Scholar
Trabandt, M and Uhlig, H (2012) How do laffer curves differ across countries? Working Paper 17862, National Bureau of Economic Research.CrossRefGoogle Scholar
van den Bijgaart, I and Smulders, S (2017) Does a recession call for less stringent environmental policy? a partial-equilibrium second-best analysis. Environmental and Resource Economics 70, 807834.CrossRefGoogle Scholar
van den Bijgaart, I, Gerlagh, R and Liski, M (2016) A simple formula for the social cost of carbon. Journal of Environmental Economics and Management 77, 7594.CrossRefGoogle Scholar
Supplementary material: PDF

Jaimes supplementary material

Online Appendix

Download Jaimes supplementary material(PDF)
PDF 221.4 KB