Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-21T05:13:12.369Z Has data issue: false hasContentIssue false

Agronomic performance of Arabica coffee cultivars for the low-altitude region

Published online by Cambridge University Press:  15 November 2024

Vinícius Augusto Filla
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Anderson Prates Coelho*
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Orlando Ferreira Morello
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Fábio Tiraboschi Leal
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
João Paulo Leme Donadelli
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Bruno Moura Coimbra
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Pedro Afonso Couto Júnior
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Stefany Silva de Souza
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Jordana de Araújo Flôres
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
Leandro Borges Lemos
Affiliation:
São Paulo State University (Unesp), School of Agricultural and Veterinary Sciences, Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, s/n, km 5, 14884-900, São Paulo, Brazil
*
Corresponding author: Anderson Prates Coelho; Email: [email protected]

Abstract

Temperature increase may cause some regions in the world to become marginal or unsuitable for Arabica coffee cultivation, due to either heat and/or marked water deficit. The feasibility of sustainable coffee production in these regions promotes good opportunity of income and value addition for rural producers within an expanding market. This study aimed to identify short-stature Arabica coffee cultivars with the best agronomic and qualitative performance in a low-altitude region. The experiment was located in northeastern São Paulo state, Brazil, at 565 m above sea level. During the experimental period (2014–2018) the average annual and November temperatures were 23.0 and 24.3°C, respectively, with an average annual water deficit of 109 mm. The experimental design was randomized blocks, with four replicates, and the treatments consisted of 17 short-stature cultivars. The cultivars Catuaí Amarelo IAC 62, Catuaí Vermelho IAC 99, IAC Ouro Amarelo, Obatã IAC 1669-20, Obatã IAC 4739, Tupi IAC 1699-33, IAC 125 RN and IPR 100 stood out in terms of yield, reaching approximately 50 bags/ha. The appropriate choice of Arabica coffee cultivar in a low-altitude region may result in yield increment of up to 74%. The cultivars Catuaí Vermelho IAC 99, Tupi IAC 1699-33 and IAC 125 RN produced grains with the best quality and highest hundred-grain weight, processing yield and percentage of grains retained on sieve 17. Therefore, it is possible for an Arabica coffee cultivar to have high yield and high grain and beverage quality in a low-altitude region, promoting production alternatives for farmers.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alvares, CA, Stape, JL, Sentelhas, PC, Gonçalves, JDM and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Barbosa, IDP, Oliveira, ACBD, Rosado, RDS, Sakiyama, NS, Cruz, CD and Pereira, AA (2019) Sensory quality of Coffea arabica L. genotypes influenced by postharvest processing. Crop Breeding and Applied Biotechnology 19, 428435.CrossRefGoogle Scholar
Bardin-Camparotto, L, Camargo, MBPD and Moraes, JFLD (2012) Época provável de maturação para diferentes cultivares de café arábica para o Estado de São Paulo. Ciência Rural 42, 594599.CrossRefGoogle Scholar
Barrios-Rodriguez, YF, Cordoba-Salazar, GA, Bahamón-Monje, AF and Gutiérrez-Guzmán, N (2021) Effect of roast degree, preparation method, and variety in the sensory and chemical characteristics of coffee (Coffea arabica): a mid-infrared spectrum analysis. Coffee Science 16, e161964.Google Scholar
BMF – BM&FBOVESPA (2006) Contrato Futuro de Café Arábica. 6 p.Google Scholar
Brasil (2011) Ministério da Agricultura, Pecuária e Abastecimento. Programa Nacional de Zoneamento Agrícola de Risco Climático. Café. Available at https://www.gov.br/agricultura/pt-br/assuntos/riscos-seguro/programa-nacional-de-zoneamento-agricola-de-risco-climatico/portarias/safra-vigente/sao-paulo (Accessed 4 November 2024).Google Scholar
Brasil (2022) Ministério da Agricultura, Pecuária e Abastecimento. Registro Nacional de Cultivares. Available at https://sistemas.agricultura.gov.br/snpc/cultivarweb/cultivares_registradas.php (Accessed 4 November 2024).Google Scholar
Camargo, MBPD (2010) The impact of climatic variability and climate change on Arabic coffee crop in Brazil. Bragantia 69, 239247.CrossRefGoogle Scholar
Carvalho, AM, Botelho, CE, Ferreira, AD, Teramoto, ET, Lima, AE, Junior, FSM and Guerreiro Filho, O (2022 a) Initial vegetative and reproductive development of coffee cultivars in Vale do Ribeira Paulista. Semina: Ciências Agrárias 43, 961972.Google Scholar
Carvalho, CHS, Bartelega, L, Sera, G, Matiello, J, Almeida, SR, Santinato, F and Hotz, A (2022 b) Catálogo de cultivares de café arábica. Brasília, DF: EMBRAPA Café, 115p.Google Scholar
Carvalho, GR, Botelho, CE, Rezende, JCD, Ferreira, AD, Cunha, RLD and Pedro, FC (2013) Performance of F4 arabic coffee progenies before and after framework pruning. Coffee Science 8, 3342.Google Scholar
Conab (2022) Acompanhamento da safra brasileira: café – Safra 2022–4° Levantamento. Available at: https://www.conab.gov.br/info-agro/safras/café (Accessed 4 November 2024).Google Scholar
FAO (2020) Faostat statistical database. FAO. Available at: https://www.fao.org/faostat/en/#data/QCL (Accessed 4 November 2024).Google Scholar
Fazuoli, LC, Braghini, MT, Silvarolla, MB, Gonçalves, W, Mistro, JC, Gallo, PB and Guerreiro Filho, O (2018 a) IAC obatã 4739-dwarf Arabic coffee cultivar with yellow fruits and resistant to leaf rust. Crop Breeding and Applied Biotechnology 18, 330333.CrossRefGoogle Scholar
Fazuoli, LC, Braghini, MT, Silvarolla, MB, Gonçalves, W, Mistro, JC, Gallo, PB and Guerreiro Filho, O (2018 b) IAC 125 RN-A dwarf coffee cultivar resistant to leaf rust and root-knot nematode. Crop Breeding and Applied Biotechnology 18, 237240.CrossRefGoogle Scholar
Ferreira, WP, Ribeiro Júnior, JI and Fátima Souza, C (2019) Climate change does not impact on Coffea arabica yield in Brazil. Journal of the Science of Food and Agriculture 99, 52705282.CrossRefGoogle Scholar
Guimarães, RJ, Mendes, ANG and Souza, CAS (2002) Noções de processamento pós colheita, secagem e beneficiamento de café. In Guimarães, RJ, Mendes, ANG and Souza, CAS (eds), Cafeicultura. Lavras: UFLA, pp. 294300.Google Scholar
Hair, JF, Black, WC, Babin, BJ, Anderson, RE and Tatham, RL (2009) Análise Multivariada de Dados (Multivariate Data Analysis), 6th Edn. Porto Alegre: Bookman, 536p.Google Scholar
Hoffmann, J (2018) The World Atlas of Coffee: From Beans to Brewing – Coffees Explored, Explained and Enjoyed, 2nd Edn. London: Octopus, 272p.Google Scholar
ICO – International Coffee Organization (2021 a) Trade Statistics Tables. World coffee consumption. Available at https://ico.org/resources/trade-statistics-tables/ (Accessed 4 November 2024).Google Scholar
ICO – International Coffee Organization (2021 b) ICO Coffee Development Report 2020. Available at https://www.ico.org/documents/cy2020-21/ed-2357e-cdr-2020.pdf (Accessed 4 November 2024).Google Scholar
Jarque, CM and Bera, AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6, 255259.CrossRefGoogle Scholar
Kahsay, GA, Turreira-Garcia, N, Ortiz-Gonzalo, D, Georget, F and Bosselmann, AS (2023) New coffee varieties as a climate adaptation strategy: empirical evidence from Costa Rica. World Development Sustainability 2, 100046.CrossRefGoogle Scholar
Kaiser, HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187200.CrossRefGoogle Scholar
Krug, CA, Malavolta, E, Moraes, FRP, Dias, RA, Carvalho, A, Monaco, LC, Franco, CM, Bergamin, J, Heinrich, WO, Abrahão, J, Rigitano, A, Souza, OF and Fava, JFM (1965) Cultura e adubação do cafeeiro. São Paulo: Instituto Brasileiro de Potassa, 277p.Google Scholar
Leroy, T, Ribeyre, F, Bertrand, B, Charmetant, P, Dufour, M, Montagnon, C, Marraccini, P and Pot, D (2006) Genetics of coffee quality. Brazilian Journal of Plant Physiology 18, 229242.CrossRefGoogle Scholar
Levene, H (1960) Robust Tests for Equality of Variances. Contribution to Probability and Statistics. Stanford: Stanford University Press, pp. 278292.Google Scholar
Lima, AA, Santos, IS, Torres, MEL, Cardon, CH, Caldeira, CF, Lima, RR, Davies, WJ, Dodd, IC and Chalfun-Junior, A (2021) Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis. Environmental and Experimental Botany 181, 104289.CrossRefGoogle Scholar
Lingle, TR (2011) The Coffee Cuppeŕs Handbook: Systematic Guide to the Sensory Evaluation of Coffeés Flavor, 4th Edn. Long Beach: Specialty Coffee Association of America, 66p.Google Scholar
Luna González, A, Macías Lopez, A, Taboada Gaytan, OR and Morales Ramos, V (2019) Cup quality attributes of Catimors as affected by size and shape of coffee bean (Coffea arabica L.). International Journal of Food Properties 22, 758767.CrossRefGoogle Scholar
Malhi, GS, Kaur, M and Kaushik, P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13, 1318.CrossRefGoogle Scholar
Matiello, J (2008) Critérios para a escolha da cultivar de café. In Cultivares de café: origem, características e recomendações, 1. Brasília: EMBRAPA Café, pp. 157226.Google Scholar
Matiello, JB, Santinato, R, Garcia, AWR, Almeida, SR and Fernandes, DR (2020) Cultura do café no Brasil. Manual de Recomendações. Rio de Janeiro e Varginha: MAPA/Fundação Procafé. 716p.Google Scholar
Medina Filho, HP, Bordignon, R and Carvalho, CD (2008) Desenvolvimento de novas cultivares de café arábica. In Cultivares de café: origem características e recomendações. Brasília: Embrapa Café, pp. 79101.Google Scholar
Melo Pereira, GV, Carvalho Neto, DP, Júnior, AIM, Prado, FG, Pagnoncelli, MGB, Karp, SG and Soccol, CR (2020) Chemical composition and health properties of coffee and coffee by-products. Advances in Food and Nutrition Research 91, 6596.CrossRefGoogle ScholarPubMed
Mesquita, CD, Rezende, JD, Carvalho, JS, Fabri Júnior, MA, Moraes, NC, Dias, PT and Araújo, WG (2016) Manual do café: colheita e preparo (Coffea arabica L.). Belo Horizonte: EMATER-MG, pp. 156. Available at http://www.sapc.embrapa.br/arquivos/consorcio/publicacoes_tecnicas/livro_colheita_preparo.pdf (Accessed 4 November 2024).Google Scholar
Morello, OF, Mingotte, FLC, Leal, FT, Coelho, AP, Salvador Neto, A and Lemos, LB (2020) Agronomic performance, postharvest and indirect selection of Coffea arabica L. cultivars for high-temperature regions. Revista Brasileira de Ciências Agrárias 15, e7722.CrossRefGoogle Scholar
Noponen, MRA, Góngora, C, Benavides, P, Gaitán, A, Hayward, J, Marsh, C, Stout, R and Wille, C (2017) Environmental sustainability—farming in the Anthropocene. In The Craft and Science of Coffee. London: Academic Press, pp. 81107.CrossRefGoogle Scholar
Noponen, MRA, Healey, JR, Soto, G and Haggar, JR (2013) Sink or sourced the potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agriculture, Ecosystems & Environment 175, 6068.CrossRefGoogle Scholar
Oliveira Aparecido, LE, Rolim, GDS, Moraes, JRDSCD, Valeriano, TTB and Lense, GHE (2018) Maturation periods for Coffea arabica cultivars and their implications for yield and quality in Brazil. Journal of the Science of Food and Agriculture 98, 38803891.CrossRefGoogle ScholarPubMed
Osorio Pérez, V, Matallana Pérez, LG, Fernandez-Alduenda, MR, Alvarez Barreto, CI, Gallego Agudelo, CP and Montoya Restrepo, EC (2023) Chemical composition and sensory quality of coffee fruits at different stages of maturity. Agronomy 13, 341.CrossRefGoogle Scholar
Pezzopane, JRM, Salva, TDJG, Lima, VB and Fazuoli, LC (2012) Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars. International Journal of Biometeorology 56, 843851.CrossRefGoogle ScholarPubMed
Pinto, HS, Zullo Junior, J, Assad, ED, Brunini, O, Alfonsi, RR and Coral, G (2001) Zoneamento de riscos climáticos para a cafeicultura do estado de São Paulo. Revista Brasileira de Agrometeorologia 9, 495500.Google Scholar
Raij, B, Fernandes, DR, Oliveira, EG and Malavolta, E (1997) Café. In Raij, B, Cantarella, H, Quaggio, JA and Furlani, AMC (eds), Recomendações de adubação e calagem para o Estado de São Paulo, 2nd Edn. Campinas: IAC, pp. 97101, (Boletim Técnico, 100).Google Scholar
Raij, BV, Andrade, JC, Cantarella, H and Quaggio, JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Campinas, São Paulo, Brasil: Instituto Agronômico, 285p.Google Scholar
Rena, AB and Maestri, M (1987) Ecofisiologia do cafeeiro. In Castro, PRC, Ferreira, SO and Yamada, T (eds), Ecofisiologia da Produção Agrícola. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, pp. 119147.Google Scholar
Richardson, D, Kath, J, Byrareddy, VM, Monselesan, DP, Risbey, JS, Squire, DT and Tozer, CR (2023) Synchronous climate hazards pose an increasing challenge to global coffee production. PLoS Climate 2, e0000134.CrossRefGoogle Scholar
Rolim, GS, Oliveira Aparecido, LE, Souza, PS, Lamparelli, RAC and Santos, ER (2020) Climate and natural quality of Coffea arabica L. drink. Theoretical and Applied Climatology 141, 8798.CrossRefGoogle Scholar
Romano, LS, Giomo, GS, Coelho, AP, Filla, VA and Lemos, LB (2022) Characterization of Yellow Bourbon coffee strains for the production of differentiated specialty coffees. Bragantia 81, e2222.CrossRefGoogle Scholar
Rosner, B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25, 165172.CrossRefGoogle Scholar
Rounce, DR, Hock, R, Maussion, F, Hugonnet, R, Kochtitzky, W, Huss, M, Berthier, E, Brinkerhoff, D, Compagno, L, Copland, L, Farinotti, D, Menounos, B and McNabb, RW (2023) Global glacier change in the 21st century: every increase in temperature matters. Science (New York, N.Y.) 379, 7883.CrossRefGoogle ScholarPubMed
Sakai, E, Barbosa, EAA, Carvalho Silveira, JM and Matos Pires, RC (2015) Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation. Agricultural Water Management 148, 1623.CrossRefGoogle Scholar
Santos, HG, Jacomine, PKT, Anjos, LHC, Oliveira, VA, Lumbreras, JF, Coelho, MR and Cunha, TJF (2018) Sistema brasileiro de classificação de solo, 5th Edn. Brasília, DF: Embrapa, 356p.Google Scholar
SCAA (2015) SCAA Protocols. Irvine, CA: Cupping Specialty Coffee, 10p.Google Scholar
Silva, VA, Rezende, JCD, Carvalho, AMD, Carvalho, GR, Rezende, TT and Ferreira, AD (2016) Recuperação de cultivares de café submetidas ao esqueletamento aos quatro anos e meio de idade. Coffee Science 11, 5564.Google Scholar
Soares, PV, Kannen, V, Jordao Junior, AA and Garcia, SB (2019) Coffee, but neither decaffeinated coffee nor caffeine, elicits chemoprotection against a direct carcinogen in the colon of Wistar rats. Nutrition and Cancer 71, 615623.CrossRefGoogle ScholarPubMed
Soil Survey Staff (2014) Soil Taxonomy, 12th Edn. Washington, DC: USDANRCS, Washington, DC, USA.Google Scholar
Souza, CAD, Teixeira, AL, Torres, JD, Silva, CA, Espindula, MC and Rocha, RB (2019) Adaptability and stability of Coffea arabica lines in the Western Amazon. Coffee Science 14, 240249.CrossRefGoogle Scholar
Teixeira, AL, Souza, FDF, Pereira, AA, Oliveira, ACBD and Rocha, RB (2015) Selection of arabica coffee progenies tolerant to heat stress. Ciência Rural 45, 12281234.CrossRefGoogle Scholar
Teles, CRA and Behrens, JH (2020) The waves of coffee and the emergence of the new Brazilian consumer. In Almeida, LF and Spers, EE (eds), Coffee Consumption and Industry Strategies in Brazil. Sawston: Woodhead Publishing, pp. 257274.CrossRefGoogle Scholar
Thornthwaite, CW and Mather, JR (1955) The Water Balance. Centerton, NJ: Drexel Institute of Technology – Laboratory of Climatology, 104p. (Publications in Climatology, vol. VIII, n.1).Google Scholar
Volsi, B, Telles, TS, Caldarelli, CE and Camara, MRGD (2019) The dynamics of coffee production in Brazil. PLoS ONE 14, e0219742.CrossRefGoogle ScholarPubMed
Waller, JM, Bigger, M and Hillocks, RJ (2007) World coffee production. In Coffee Pests, Diseases and Their Management. Wallingford: CABI, pp. 1733.CrossRefGoogle Scholar
WeldeMichael, G and Teferi, D (2020) The impact of climate change on coffee (Coffea arabica L.) production and genetic resources. International Journal of Research Studies in Agricultural Sciences 5, 2634.Google Scholar
Supplementary material: File

Filla et al. supplementary material

Filla et al. supplementary material
Download Filla et al. supplementary material(File)
File 80.9 KB