Hostname: page-component-6587cd75c8-r56mn Total loading time: 0 Render date: 2025-04-23T13:29:13.109Z Has data issue: false hasContentIssue false

Association of growth differentiation factor 9 expression with nuclear receptor and basic helix-loop-helix transcription factors in buffalo oocytes during in vitro maturation

Published online by Cambridge University Press:  11 November 2024

Tripti Jain
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India Currently at Nanaji Deshmukh Veterinary Science University (NDVSU), Jabalpur, MP, India
Asit Jain
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India Currently at Nanaji Deshmukh Veterinary Science University (NDVSU), Jabalpur, MP, India
Surender Lal Goswami
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India
Bhaskar Roy
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India
Sachinandan De
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India
Rakesh Kumar
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India
Tirtha Kumar Datta*
Affiliation:
Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001 HR India Currently at ICAR-Central Institute for Research on Buffaloes, Hisar, HR, India
*
Corresponding author: Tirtha Kumar Datta; Email: tirthadatta@gmail.com

Abstract

Growth differentiation factor 9 (GDF9) is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different in vitro maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression. Buffalo cumulus–oocyte complexes were aspirated from abattoir-derived ovaries and matured in different IVM groups. Following maturation, TFs expression was studied at 8 h of maturation in all four different IVM groups and correlated with GDF9 expression. USF1 displayed positive whereas GCNF, TWIST1 and ESR2 revealed negative correlation with GDF9 expression. TWIST1 & ESR2 revealing negative correlation with GDF9 expression were found to be positively correlated amongst themselves also. GCNF & USF1 revealing highly significant correlation with GDF9 expression in an opposite manner were found to be negatively correlated. The present study concludes that the expression of GDF9 in buffalo oocytes remains under control through the involvement of NR and bHLH TFs.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asaka, J., Terada, T., Ogasawara, K., Katsura, T. and Inui, K. (2007) Characterization of the basal promoter element of human organic cation transporter 2 gene. Characterization of the basal promoter element of human organic cation transporter 2 gene. Journal of Pharmacology and Experimental Therapeutics 321, 684689.CrossRefGoogle ScholarPubMed
Bayne, R. A. L., Martins da Silva, S. J. and Anderson, R. A. (2004) Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Molecular Human Reproduction 10, 373381.CrossRefGoogle ScholarPubMed
Bettegowda, A., Patel, O. V., Lee, K. B., Park, K. E., Salem, M., Yao, J., Ireland, J. J. and Smith, G. W. (2008) Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biology of Reproduction 79, 301309.CrossRefGoogle ScholarPubMed
Bhardwaj, R., Ansari, M.M., Pandey, S., Parmar, M.S., Chandra, V., Kumar, G.S. and Sharma, G.T. (2016) GREM1, EGFR, and HAS2; the oocyte competence markers for improved buffalo embryo production in vitro. Theriogenology, 86, 20042011.CrossRefGoogle ScholarPubMed
Brackett, B.G. and Oliphant, G. (1975) Capacitation of rabbit spermatozoa in vitro . Biology of Reproduction 12, 260274.CrossRefGoogle ScholarPubMed
Britt, K. L., Saunders, P. K., McPherson, S. J., Misso, M. L., Simpson, E. R. and Findlay, J. K. (2004). Estrogen actions on follicle formation and early follicle development. Biology of Reproduction 71, 17121723.CrossRefGoogle ScholarPubMed
Chauhan, M.S., Singla, S.K., Palta, P., Manik, R.S. and Madan, M.L. (1998) In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus bubalis) embryos: Effect of oocytes quality and type of serum. Reproduction Fertility Development 10, 173177.CrossRefGoogle ScholarPubMed
Choi, Y. and Rajkovic, A. (2006) Characterization of NOBOX DNA binding specificity and its regulation of Gdf9and Pou5f1 promoters. Journal of Biological Chemistry 81, 3574735756.CrossRefGoogle Scholar
Choi, Y., Ballow, D.J., Xin, Y. and Rajkovic, A. (2008) Lim homeobox gene, lhx8, is essential for mouse oocyte differentiation and survival. Biology of Reproduction 79, 442449.CrossRefGoogle ScholarPubMed
Corre, S. and Galibert, M. D., (2006) USF as a key regulatory element of gene expression. Medicine Science 22, 6267.Google ScholarPubMed
De sousa, P. A., Westhusin, M. E. and Watson, A. J. (1998) Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Molecular Reproduction and Development 49, 119130.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Ebara, S., Kawasaki, S., Nakamura, I., Tsutsumimoto, T., Nakayama, K., Nikaido, T. and Takaoka, K. (1997) Transcriptional regulation of the mBMP-4 gene through an Ebox in the 5’-flanking promoter region involving USF. Biochemical and Biophysical Research Communications 240, 136141.CrossRefGoogle ScholarPubMed
Eppig, J. J. (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829838.CrossRefGoogle ScholarPubMed
Firulli, B. A., Hadzie, D. B., McDaid, J. R. and Firulli, A. B. (2000) The basic helix loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function. The Journal of Biological Chemistry 275, 3356733573.CrossRefGoogle ScholarPubMed
Gilchrist, R. B., Ritter, L. J. and Armstrong, D. T. (2004) Oocyte–somatic cell interactions during follicle development in mammals. Animal Reproduction Science 82–83, 431446.CrossRefGoogle ScholarPubMed
Gode, F., Gulekli, B., Dogan, E., Korhan, P., Dogan, S., Bige, O., Cimrin, D. and Atabey, N. (2011) Influence of follicular fluid GDF9 and BMP15 on embryo quality. Fertility and Sterility 95, 22742278.CrossRefGoogle ScholarPubMed
Gomez, M.N., Kang, J.T., Koo, O.J., Kim, S.J., Kwon, D.K., Park, S.J., Atikuzzaman, M., Hong, S.G., Jang, G. and Lee, B.C. (2012) Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes. Zygote 20, 135145.CrossRefGoogle ScholarPubMed
Gupta, S., Pandey, S., Parmar, M. S., Somal, A., Paul, A., Panda, B. S. K., Bhat, I. A., Baiju, I., Bharti, M. K., Saikumar, G., Sarkar, M., Chandra, V. and Sharma, G. T. (2017) Impact of oocyte-secreted factors on its developmental competence in buffalo. Zygote 25, 313320.CrossRefGoogle ScholarPubMed
Hall, J. M. and McDonnell, D. P. (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Molecular Interventions 5, 343357.CrossRefGoogle ScholarPubMed
Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P. L., Wu, H. Y., Wang, J. Y.,Nakatani, Y. and Kedes, L. (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96, 405413.CrossRefGoogle ScholarPubMed
Hamamori, Y., Wu, H. Y., Sartorelli, V. and Kedes, L. (1997) The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein, Twist. Molecular and Cellular Biology 17, 65636573.CrossRefGoogle Scholar
Hebrok, M., Fuchtbauer, A. and Fuchtbauer, E. M. (1997) Repression of muscle-specific gene activation by the murine twist protein. Experimental Cell Research 232, 295303.CrossRefGoogle ScholarPubMed
Huntriss, J., Gosden, R., Hinkins, M., Oliver, B., Miller, D., Rutherford, A. J. and Picton, H. M. (2002) Isolation, characterization and expression of the human factor in the germline alpha (FIGLA) gene in ovarian follicles and oocytes. Molecular Human Reproduction 8, 10871095.CrossRefGoogle ScholarPubMed
Hussein, T. S., Thompson, J. G. and Gilchrist, R. B. (2006) Oocytes secreted factors enhance oocyte devlopmental comptetence. Development (Cambridge, England) 296, 514521.Google Scholar
Jain, T., Jain, A., Kumar, P., Goswami, S.L., De, S., Singh, D. and Datta, T.K. (2012) Kinetics of GDF9 expression in buffalo oocytes during in vitro maturation and their associated development ability. General Comparative Endocrinology. 178, 477484.CrossRefGoogle ScholarPubMed
Jones, G. M., Cram, D. S., Song, B., Magli, M. C., Gianaroli, L., Kaplan, O.L., Findlay, J. K., Jenkin, G. and Trounson, A. O. (2008) Gene expression profiling of human oocytes following in vivo or in vitro maturation, Human Reproduction (Oxford, England) 23, 11381144.CrossRefGoogle ScholarPubMed
Joshi, S., Davies, H., Sims, L. P., Levy, S. E. and Dean, J. (2007) Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Developmental Biology 7, 67.CrossRefGoogle ScholarPubMed
Kawasaki, S., Ebara, S., Nakayama, K. and Takaoka, K. (1999) The E-Box motif, recognized by tissue-specific nuclear factor(s), isimportant for BMP-4 gene expression in osteogenic cells. Biochemical and Biophysical Research Communications 263, 560565.CrossRefGoogle Scholar
Keefer, C.L., Stice, S.L. and Matihews, D.L. (1994) Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biology of Reproduction 50, 935939.CrossRefGoogle ScholarPubMed
Knight, P.G. and Glister, C. (2006) TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191206.CrossRefGoogle ScholarPubMed
Knijin, H. M., Wrenzycki, C., Hendriksen, P. J. M., Vos, P. L. A. M., Hermann, D., Vander, W., Niemann, H. and Dielemen, J. J. (2002) Effects of oocyte maturation regimen on the relative abundance of gene transcript in bovine blastocysts derived in vitro or in vivo. Reproduction 124, 365375.CrossRefGoogle Scholar
Kowalski, A. A., Graddy, L. G., Vale-Cruz, D. S., Choi, I., Katzenellenbogen, B. S., Simmen, F. A. and Simmen, R. C. M., (2002) Molecular cloning of porcine estrogen receptor-β complementary DNAs and developmental expression in periimplantation embryos. Biology of Reproduction 66, 760769.CrossRefGoogle ScholarPubMed
Kristensen, S.G., Andersen, K., Clement, C.A., Franks, S., Hardy, K. and Andersen, C.Y. (2014) Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. Molecular Human Reproduction 20, 293308.CrossRefGoogle ScholarPubMed
Kumar, D., Palta, P., Manik, R.S., Singla, S.K. and Chauhan, M.S. (2007) Effect of culture media and serum supplementation on the development of in vitro fertilized buffalo embryos. The Indian Journal of Animal Science 77, 697701.Google Scholar
Lan, Z. J., Gu, P., Xu, X., Jackson, K. J., DeMayo, F. J., O’Malley, B. W. and Cooney, A. J. (2003) GCNF-dependent repression of BMP-15 and GDF-9 mediates gamete regulation of female fertility. The EMBO Journal 22, 40704081.CrossRefGoogle ScholarPubMed
Li, L. C., Yeh, C. C., Nojima, D. and Dahiya, R. (2000) Cloning and characterization of human estrogen receptor beta promoter. Biochemical and Biophysical Research Communications 275, 682689.CrossRefGoogle ScholarPubMed
Liang, L., Soyal, S. M. and Dean, J. (1997) FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development (Cambridge, England) 12, 49394947.CrossRefGoogle Scholar
Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402408.CrossRefGoogle ScholarPubMed
Matzuk, M. M., Burns, K. H., Vivieros, M. M. and Eppig, J. J. (2002) Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 21782180.CrossRefGoogle ScholarPubMed
McKenna, N. J., Lanz, R. B. and O’Malley, B. W. (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocrine Reviews 20, 321344.Google ScholarPubMed
Pandey, S., Somal, A., Parmar, M.S., Gupta, S., Bharti, M.K., Bhat, I.A., Indu, B., Chandra, V., Kumar, G.S. and Sharma, G.T. (2018) Effect of roscovitine on developmental competence of small follicle derived buffalo oocyte. The Indian Journal of Medical Research 148, 140150.CrossRefGoogle Scholar
Pangas, S.A. and Rajkovic, A. (2006) Transcriptional regulation of early oogenesis: in search of masters. Human Reproduction Update 12, 6576.CrossRefGoogle ScholarPubMed
Pennetier, S., Uzbekova, S., Perreau, C., Papollier, P., Mermillod, P. and Dalbies-Tran, R. (2004) Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF-9, BMP15 and VASA in bovine adult tissues, oocytes and preimplantation embryos. Biology of Reproduction 71,13591366.CrossRefGoogle ScholarPubMed
Qinglei, L., McKenzie, L. J. and Matzuk, M. M. (2008) Revisiting oocyte–somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Human Reproduction Update 12, 6576.Google Scholar
Rajkovic, A., Pangas, S.A., Ballow, D., Suzumori, N. and Matzuk, M.M. (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305, 11571159.CrossRefGoogle ScholarPubMed
Ramsey, T. L. and Klinge, C. M. (2001) Estrogen response element binding induces alterations in estrogen receptor-alpha conformation as revealed by susceptibility to partial proteolysis. Journal of Molecular Endocrinology 27, 275292.CrossRefGoogle ScholarPubMed
Roy, B., Rajput, S., Raghav, S., Kumar, P., Verma, A., Jain, A., Jain, T., Singh, D., De, S., Goswami, S.L. and Datta, T.K. (2013) Characterization of oocyte-expressed GDF9 gene in buffalo and mapping of its TSS and putative regulatory elements. Zygote 21, 115124.CrossRefGoogle ScholarPubMed
Roy, B., Rajput, S., Raghav, S., Kumar, P., Verma, A., Kumar, S., De, S., Goswami, S.L. and Datta, T.K. (2012) A reporter promoter assay confirmed the role of a distal promoter NOBOX binding element in enhancing expression of GDF9 gene in buffalo oocytes. Animal Reproduction Science 135, 1824.CrossRefGoogle ScholarPubMed
Sirito, M., Lin, Q., Maity, T. and Sawadogo, M. (1994) Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Research 22, 427433.CrossRefGoogle ScholarPubMed
Smith, L.C. (1993) Membrane and intracellular effects of ultraviolet irradiation with Hoechst 33342 on bovine secondary oocytes matured in vitro . Journal of Reproduction and Fertility 99, 3944.CrossRefGoogle ScholarPubMed
Sosic, D., Brand-Saberi, B., Schmidt, D., Christ, B., and Olson, E. N. (1997) Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals. Developmental Biology 185, 229243.CrossRefGoogle ScholarPubMed
Sosic, D., Richardson, J. A., Yu, K., Ornitz, D. M. and Olson, E. N. (2003) Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112, 169180.CrossRefGoogle ScholarPubMed
Spicer, A. P., Augustine, M. L. and McDonald, J. A. (1996) Molecular cloning and charaterization of a putative mouse hyaluronan synthase. The Journal of Biological Chemistry 271, 2340023406.CrossRefGoogle Scholar
Tessier, C., Deb, S., Prigent-Tessier, A., Ferguson-Gottschall, S., Gibori, G. B., Shiu, R. P. C. and Gibori, G. (2000). Estrogen receptors α and β in rat decidual cells: cell-specific expression and differential regulation by steroid hormones and prolactin. Endocrinology 141, 38423851.CrossRefGoogle ScholarPubMed
Warzych, E., Wrenzycki, C., Peippo, J. and Leichniak, D. (2007) Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced In Vitro . Molecular Reproduction and Development 74, 280289.CrossRefGoogle ScholarPubMed
Watson, A. J., De Sousa, P., Caveney, A., Barcroft, L. C., Natale, D., Urquhart, J. and Westhusin, M. E. (2000) Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis. Biology of Reproduction 62, 355364.CrossRefGoogle ScholarPubMed
Yan, C., Elvin, J. A., Lin, Y. N., Hadsell, L. A., Wang, J., DeMayo, F. J. and Matzuk, M. M. (2006) Regulation of growth differentiation factor 9 expression in oocytes in vivo: a key role of the E-box. Biology of Reproduction 74, 9991006.CrossRefGoogle ScholarPubMed
Yeo, C. X., Gilchrist, R. B., Thompson, J. G. and Lane, M. (2008) Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Human Reproduction (Oxford, England) 23, 6773.CrossRefGoogle ScholarPubMed