Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T12:16:41.686Z Has data issue: false hasContentIssue false

A FAST ALGORITHM FOR CALCULATING S-INVARIANTS

Published online by Cambridge University Press:  29 June 2020

DIRK SCHÜTZ*
Affiliation:
Department of Mathematical Sciences, Durham University, Durham, UK, e-mail: [email protected]

Abstract

We use the divide-and-conquer and scanning algorithms for calculating Khovanov cohomology directly on the Lee- or Bar-Natan deformations of the Khovanov complex to give an alternative way to compute Rasmussen s-invariants of knots. By disregarding generators away from homological degree 0, we can considerably improve the efficiency of the algorithm. With a slight modification, we can also apply it to a refinement of Lipshitz–Sarkar.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bar-Natan, D., Khovanov’s homology for tangles and cobordisms, Geom. Topol. 9 (2005), 14431499.CrossRefGoogle Scholar
Bar-Natan, D., Fast Khovanov homology computations, J. Knot Theory Ramifications 16(3) (2007), 243255.CrossRefGoogle Scholar
Bar-Natan, D. and Morrison, S., The Karoubi envelope and Lee’s degeneration of Khovanov homology, Algebr. Geom. Topol. 6 (2006), 14591469.CrossRefGoogle Scholar
Freedman, M., Gompf, R., Morrison, S. and Walker, K., Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1(2) (2010), 171208.CrossRefGoogle Scholar
Friedl, S. and Teichner, P., New topologically slice knots, Geom. Topol. 9 (2005), 21292158.CrossRefGoogle Scholar
Khovanov, M., A categorification of the Jones polynomial, Duke Math. J. 101(3) (2000), 359426.CrossRefGoogle Scholar
Lee, E. S., An endomorphism of the Khovanov invariant, Adv. Math. 197(2) (2005), 554586.CrossRefGoogle Scholar
Lobb, A., Computable bounds for Rasmussen’s concordance invariant, Compos. Math. 147(2) (2011), 661668.CrossRefGoogle Scholar
Lobb, A., Orson, P. and Schütz, D., A calculus for flow categories, arXiv e-prints 1710.01798 (2017).Google Scholar
Lobb, A., Orson, P. and Schütz, D., Framed cobordism and flow category moves, Algebr. Geom. Topol. 18(5) (2018), 28212858.CrossRefGoogle Scholar
Lobb, A., Orson, P. and Schütz, D., Khovanov homotopy calculations using flow category calculus, arXiv e-prints 1710.01857, Exp. Math. (to appear).Google Scholar
Lipshitz, R. and Sarkar, S., A Khovanov stable homotopy type, J. Amer. Math. Soc. 27(4) (2014), 9831042.CrossRefGoogle Scholar
Lipshitz, R. and Sarkar, S., A refinement of Rasmussen’s S-invariant, Duke Math. J. 163(5) (2014), 923952.CrossRefGoogle Scholar
Manolescu, C. and Ozsváth, P., On the Khovanov and knot Floer homologies of quasi-alternating links, in Proceedings of Gökova Geometry-Topology Conference 2007, Gökova Geometry/Topology Conference (GGT), Gökova (2008), 6081.Google Scholar
Mackaay, M., Turner, P. and Vaz, P., A remark on Rasmussen’s invariant of knots, J. Knot Theory Ramifications 16(3) (2007), 333344.CrossRefGoogle Scholar
Piccirillo, L., Shake genus and slice genus, Geom. Topol. 23(5) (2019), 26652684.CrossRefGoogle Scholar
Rasmussen, J., Khovanov homology and the slice genus, Invent. Math. 182(2) (2010), 419447.CrossRefGoogle Scholar
Schütz, D., SKnotJob, Software (2018). Available at http://www.maths.dur.ac.uk/{~}dma0ds/{knotjob.html}.Google Scholar
Sarkar, S., Seed, C. and Szabó, Z., A perturbation of the geometric spectral sequence in Khovanov homology, Quantum Topol. 8(3) (2017), 571628.CrossRefGoogle Scholar
Turner, P. R., Calculating Bar-Natan’s characteristic two Khovanov homology, J. Knot Theory Ramifications 15(10) (2006), 13351356.CrossRefGoogle Scholar