No CrossRef data available.
Article contents
Radial solvability for Pucci-Lane-Emden systems in annuli
Part of:
General theory in ordinary differential equations
Elliptic equations and systems
Partial differential equations
Published online by Cambridge University Press: 15 March 2023
Abstract
We establish a priori bounds, existence and qualitative behaviour of positive radial solutions in annuli for a class of nonlinear systems driven by Pucci extremal operators and Lane-Emden coupling in the superlinear regime. Our approach is purely nonvariational. It is based on the shooting method, energy functionals, spectral properties, and on a suitable criteria for locating critical points in annular domains through the moving planes method that we also prove.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 154 , Issue 2 , April 2024 , pp. 494 - 507
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
Bandle, C., Coffman, C. and Marcus, M.. Nonlinear elliptic problems in annular domains. J. Differ. Equ. 69 (1987), 322–345.Google Scholar
Birindelli, I., Galise, G., Leoni, F. and Pacella, F.. Concentration and energy invariance for a class of fully nonlinear elliptic equations. Calc. Var. Partial Differ. Equ. 57 (2018), 158.Google Scholar
Caffarelli, L. A. and Cabré, X.. Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43 (Providence, RI: American Mathematical Society, 1995).Google Scholar
Dalmasso, R.. Positive solutions of nonlinear elliptic systems. Ann. Polon. Math. 58 (1993), 201–212.Google Scholar
de Figueiredo, D. G., Lions, P.-L. and Nussbaum, R. D.. A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61 (1982), 41–63.Google Scholar
dos Santos, E. M. and Nornberg, G.. Symmetry properties of positive solutions for fully nonlinear elliptic systems. J. Differ. Equ. 269 (2020), 4175–4191.Google Scholar
Dunninger, D. and Wang, H.. Existence and multiplicity of positive solutions for elliptic systems. Nonlinear Anal. Theory, Methods Appl. 29 (1997), 1051–1060.Google Scholar
Felmer, P. L. and Quaas, A.. Positive radial solutions to a ‘semilinear’ equation involving the Pucci's operator. J. Differ. Equ. 199 (2004), 376–393.CrossRefGoogle Scholar
Galise, G., Leoni, F. and Pacella, F.. Existence results for fully nonlinear equations in radial domains. Commun. Partial Differ. Equ. 42 (2017), 757–779.Google Scholar
Gidas, B., Ni, W. M. and Nirenberg, L.. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68 (1979), 209–243.Google Scholar
Lin, S.-S. and Pai, F.-M.. Existence and multiplicity of positive radial solutions for semilinear elliptic equations in annular domains. SIAM J. Math. Anal. 22 (1991), 1500–1515.CrossRefGoogle Scholar
Maia, L. and Nornberg, G.. Radial solutions for Hénon type fully nonlinear equations in annuli and exterior domains. Math. Eng. 4 (2022), 1–18.Google Scholar
Moreira dos Santos, E., Nornberg, G., Schiera, D. and Tavares, H.. Principal spectral curves for Lane-Emden fully nonlinear type systems and applications. Calc. Var. 62 (2023), 1–38.Google Scholar
Ni, W.-M. and Nussbaum, R. D.. Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,\,r)=0$
. Commun. Pure Appl. Math. 38 (1985), 67–108.Google Scholar

Quaas, A. and Sirakov, B.. Existence and non-existence results for fully nonlinear elliptic systems. Indiana Univ. Math. J. 58 (2009), 751–788.Google Scholar
Quaas, A. and Sirakov, B.. Existence results for nonproper elliptic equations involving the Pucci operator. Commun. Partial Differ. Equ. 31 (2006), 987–1003.Google Scholar
Troy, W. C.. Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ. 42 (1981), 400–413.Google Scholar