Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T21:27:37.583Z Has data issue: false hasContentIssue false

On decay–surge population models

Published online by Cambridge University Press:  08 November 2022

Branda Goncalves*
Affiliation:
CY Cergy Paris Université
Thierry Huillet*
Affiliation:
CY Cergy Paris Université
Eva Löcherbach*
Affiliation:
Université Paris 1 Panthéon-Sorbonne
*
*Postal address: LPTM, Laboratoire de Physique Théorique et Modélisation, CNRS UMR-8089, 2 avenue Adolphe-Chauvin, 95302 Cergy-Pontoise, France.
*Postal address: LPTM, Laboratoire de Physique Théorique et Modélisation, CNRS UMR-8089, 2 avenue Adolphe-Chauvin, 95302 Cergy-Pontoise, France.
****Postal address: SAMM, Statistique, Analyse et Modélisation Multidisciplinaire, EA 4543 et FR FP2M 2036 CNRS, 90 rue de Tolbiac, 75013 Paris, France. Email address: [email protected]

Abstract

We consider continuous space–time decay–surge population models, which are semi-stochastic processes for which deterministically declining populations, bound to fade away, are reinvigorated at random times by bursts or surges of random sizes. In a particular separable framework (in a sense made precise below) we provide explicit formulae for the scale (or harmonic) function and the speed measure of the process. The behavior of the scale function at infinity allows us to formulate conditions under which such processes either explode or are transient at infinity, or Harris recurrent. A description of the structures of both the discrete-time embedded chain and extreme record chain of such continuous-time processes is supplied.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adke, S. R. (1993). Records generated by Markov sequences. Statist. Prob. Lett. 18, 257263.CrossRefGoogle Scholar
Asmussen, S., Kella, O. (1996). Rate modulation in dams and ruin problems. J. Appl. Prob. 33, 523535.CrossRefGoogle Scholar
Boxma, O., Kella, O. and Perry, D. (2011). On some tractable growth–collapse processes with renewal collapse epochs. J. Appl. Prob. 48A, New Frontiers in Applied Probability: A Festschrift for Soren Asmussen, 217234.CrossRefGoogle Scholar
Boxma, O., Perry, D., Stadje, W. and Zacks, S. (2006). A Markovian growth–collapse model. Adv. Appl. Prob. 38, 221243.CrossRefGoogle Scholar
Brémaud, P. and Massoulié, L. (1996). Stability of nonlinear Hawkes processes. Ann. Prob. 24, 15631588.CrossRefGoogle Scholar
Brockwell, P. J., Resnick, S. I. and Tweedie, R. L. (1982). Storage processes with general release rule and additive inputs. Adv. Appl. Prob. 14, 392433.CrossRefGoogle Scholar
Carlson, J. M., Langer, J. S. and Shaw, B. E. (1994). Dynamics of earthquake faults. Rev. Modern Phys. 66, article no. 657.CrossRefGoogle Scholar
Çinlar, E. and Pinsky, M. (1971). A stochastic integral in storage theory. Z. Wahrscheinlichkeitsth. 17, 227240.CrossRefGoogle Scholar
Cohen, J. W. (1982). The Single Server Queue. North-Holland, Amsterdam.Google Scholar
Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of non-diffusion. J. R. Statist. Soc. B [Statist. Methodology] 46, 353388.Google Scholar
Daw, A. and Pender, J. (2019). Matrix calculations for moments of Markov processes. Preprint. Available at https://arxiv.org/abs/1909.03320.Google Scholar
Eliazar, I. and Klafter, J. (2006). Growth–collapse and decay–surge evolutions, and geometric Langevin equations. Physica A 387, 106128.CrossRefGoogle Scholar
Eliazar, I. and Klafter, J. (2007) Nonlinear shot noise: from aggregate dynamics to maximal dynamics. Europhys. Lett. 78, article no. 40001.CrossRefGoogle Scholar
Eliazar, I. and Klafter, J. (2009). The maximal process of nonlinear shot noise. Physica A 388, 17551779.CrossRefGoogle Scholar
Goncalves, B., Huillet, T. and Löcherbach, E. (2020). On decay–surge population models. Preprint. Available at https://arxiv.org/abs/2012.00716v1.Google Scholar
Goncalves, B., Huillet, T. and Löcherbach, E. (2022). On population growth with catastrophes. Stoch. Models 38, 214249.CrossRefGoogle Scholar
Gripenberg, G. (1983). A stationary distribution for the growth of a population subject to random catastrophes. J. Math. Biol. 17, 371379.CrossRefGoogle ScholarPubMed
Hanson, F. B. and Tuckwell, H. C. (1978). Persistence times of populations with large random fluctuations. Theoret. Pop. Biol. 14, 4661.CrossRefGoogle ScholarPubMed
Harrison, J. M. and Resnick, S. I. (1976). The stationary distribution and first exit probabilities of a storage process with general release rule. Math. Operat. Res. 1, 347358.CrossRefGoogle Scholar
Harrison, J. M. and Resnick, S. I. (1978). The recurrence classification of risk and storage processes. Math. Operat. Res. 3, 5766.CrossRefGoogle Scholar
Has’minskii, R. Z. (1980) Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Aalphen.CrossRefGoogle Scholar
Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 8390.CrossRefGoogle Scholar
Huillet, T. (2021). A shot-noise approach to decay–surge population models. Preprint. Available at https://hal.archives-ouvertes.fr/hal-03138215.Google Scholar
Kella, O. (2009). On growth–collapse processes with stationary structure and their shot-noise counterparts. J. Appl. Prob. 46, 363371.CrossRefGoogle Scholar
Kella, O. and Stadje, W. (2001). On hitting times for compound Poisson dams with exponential jumps and linear release. J. Appl. Prob. 38, 781786.CrossRefGoogle Scholar
Malrieu, F. (2015). Some simple but challenging Markov processes. Ann. Fac. Sci. Toulouse 24, 857883.CrossRefGoogle Scholar
Meyn, S. and Tweedie, R. (1993). Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518548.CrossRefGoogle Scholar
Parzen, E. (1999). Stochastic Processes. Society for Industrial and Applied Mathematics, Philadelphia.CrossRefGoogle Scholar
Privault, N. (2020). Recursive computation of the Hawkes cumulants. Preprint. Available at https://arxiv.org/abs/2012.07256.Google Scholar
Privault, N. (2021). Moments of Markovian growth–collapse processes. Preprint. Available at https://arxiv.org/abs/2103.04644.Google Scholar
Richetti, P., Drummond, C., Israelachvili, J. and Zana, R. (2001). Inverted stick–slip friction. Europhys. Lett. 55, article no. 653.CrossRefGoogle Scholar
Snyder, D. L. and Miller, M. I. (1991). Random Point Processes in Time and Space, 2nd edn. Springer, New York.CrossRefGoogle Scholar