Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T10:32:31.677Z Has data issue: false hasContentIssue false

Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes

Published online by Cambridge University Press:  03 April 2020

Hongli Xu
Affiliation:
Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Jingbing Xie
Affiliation:
Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Zhongbo Liu
Affiliation:
Shenzhen Capchem Technology Co., Ltd., Shenzhen 518118, China
Jun Wang*
Affiliation:
Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Yonghong Deng*
Affiliation:
Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
*
a)Address all correspondence to Jun Wang at [email protected] and Yonghong Deng at [email protected]
a)Address all correspondence to Jun Wang at [email protected] and Yonghong Deng at [email protected]
Get access

Abstract

Solid polymer electrolytes are a crucial class of compounds in the next-generation solid-state lithium batteries featured by high safety and extraordinary energy density. This review highlights the importance of carbonyl-coordinating polymer-based solid polymer electrolytes in next-generation safe and high–energy density lithium metal batteries, unraveling their synthesis, sustainability, and electrochemical performance.

With the massive consumption of fossil fuel in vehicles nowadays, the resulted air pollution and greenhouse gases issue have now aroused the global interest on the replacement of the internal combustion engines with engine systems using renewable energy. Thus, the commercial electric vehicle market is growing fast. As the requirement for longer driving distances and higher safety in commercial electric vehicles becomes more demanding, great endeavors have been devoted to developing the next-generation solid-state lithium metal batteries using high-voltage cathode materials, e.g., high nickel (Ni) ternary active materials, LiCoO2, and spinel LiNi0.5Mn1.5O4. However, the most extensively investigated solid polymer electrolytes (SPEs) are based on polyether-based polymers, especially the archetypal poly(ethylene oxide), which are still suffering from low ionic conductivity (10−7 to 10−6 S/cm at room temperature), limited lithium ion transference number (<0.2), and narrow electrochemical stability window (<3.9 V), restricting this type of SPEs from realizing their full potential for the next-generation lithium-based energy storage technologies. As a promising class of alternative polymer hosts for SPEs, carbonyl-coordinating polymers have been extensively researched, exhibiting unique and promising electrochemical properties. Herein, the synthesis, sustainability, and electrochemical performance of carbonyl-coordinating SPEs for high-voltage solid-state lithium batteries will be reviewed.

Type
Review Article
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mohanty, D., Li, J., Nagpure, S.C., Wood, D.L., and Daniel, C.: Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy Sustainability 2, E15 (2015).CrossRefGoogle Scholar
US Energy Information Administration (2018). Available at: http://www.eia.gov/ (accessed February 2020).Google Scholar
Lewis, N.S.: Powering the planet. MRS Bull. 32, 808 (2007).CrossRefGoogle Scholar
Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
Bresser, D., Hosoi, K., Howell, D., Li, H., Zeisel, H., Amine, K., and Passerini, S.: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382, 176 (2018).CrossRefGoogle Scholar
Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
Quartarone, E. and Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).CrossRefGoogle Scholar
Goodenough, J.B. and Park, K.-S.: The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle ScholarPubMed
Goodenough, J.B. and Singh, P.: Review—Solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 162, A2387 (2015).CrossRefGoogle Scholar
Goodenough, J.B.: How we made the Li-ion rechargeable battery. Nat. Electron. 1, 204 (2018).CrossRefGoogle Scholar
Manthiram, A., Yu, X., and Wang, S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).CrossRefGoogle Scholar
Osada, I., de Vries, H., Scrosati, B., and Passerini, S.: Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem., Int. Ed. 55, 500 (2016).CrossRefGoogle ScholarPubMed
Sarabi, S., Kefsi, L., Merdassi, A., and Robyns, B.: Supervision of plug-in electric vehicles connected to the electric distribution grids. Int. J. Electr. Energy 1, 256 (2013).CrossRefGoogle Scholar
Wright, P.V.: Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 7, 319 (1975).CrossRefGoogle Scholar
Armand, M.: Polymer solid electrolytes—An overview. Solid State Ionics 9–10, 745 (1983).CrossRefGoogle Scholar
Wang, C., Zhang, H., Li, J., Chai, J., Dong, S., and Cui, G.: The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. J. Power Sources 397, 157 (2018).CrossRefGoogle Scholar
Fish, D. and Smid, J.: Solvation of lithium ions in mixtures of tetraethylene glycol dimethyl ether and propylene carbonate. Electrochim. Acta 37, 2043 (1992).CrossRefGoogle Scholar
Zhang, C., Ueno, K., Yamazaki, A., Yoshida, K., Moon, H., Mandai, T., Umebayashi, Y., Dokko, K., and Watanabe, M.: Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. J. Phys. Chem. B 118, 5144 (2014).CrossRefGoogle ScholarPubMed
Wu, J., Rao, Z., Cheng, Z., Yuan, L., Li, Z., and Huang, Y.: Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 9, 1902767 (2019).CrossRefGoogle Scholar
Xu, C., Sun, B., Gustafsson, T., Edström, K., Brandell, D., and Hahlin, M.: Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study. J. Mater. Chem. A 2, 7256 (2014).CrossRefGoogle Scholar
Wei, Z., Chen, S., Wang, J., Wang, Z., Zhang, Z., Yao, X., Deng, Y., and Xu, X.: Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J. Mater. Chem. A 6, 13438 (2018).CrossRefGoogle Scholar
Di Noto, V., Lavina, S., Giffin, G.A., Negro, E., and Scrosati, B.: Polymer electrolytes: Present, past and future. Electrochim. Acta 57, 4 (2011).CrossRefGoogle Scholar
Meyer, W.H.: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439 (1998).3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Agrawal, R.C. and Pandey, G.P.: Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys. 41, 223001 (2008).CrossRefGoogle Scholar
Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554 (2010).CrossRefGoogle Scholar
Hallinan, D.T. and Balsara, N.P.: Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503 (2013).CrossRefGoogle Scholar
Xue, Z., He, D., and Xie, X.: Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218 (2015).CrossRefGoogle Scholar
Mindemark, J., Lacey, M.J., Bowden, T., and Brandell, D.: Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114 (2018).CrossRefGoogle Scholar
Zhang, J., Yang, J., Dong, T., Zhang, M., Chai, J., Dong, S., Wu, T., Zhou, X., and Cui, G.: Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: Advances and perspective. Small 14, 1800821 (2018).CrossRefGoogle ScholarPubMed
Manuel Stephan, A.: Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21 (2006).CrossRefGoogle Scholar
Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).CrossRefGoogle ScholarPubMed
Druger, S.D., Nitzan, A., and Ratner, M.A.: Dynamic bond percolation theory: A microscopic model for diffusion in dynamically disordered systems. I. Definition and one-dimensional case. J. Chem. Phys. 79, 3133 (1983).CrossRefGoogle Scholar
Webb, M.A., Savoie, B.M., Wang, Z.-G., and Miller, T.F. III: Chemically specific dynamic bond percolation model for ion transport in polymer electrolytes. Macromolecules 48, 7346 (2015).CrossRefGoogle Scholar
Song, J.Y., Wang, Y.Y., and Wan, C.C.: Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183 (1999).CrossRefGoogle Scholar
Wang, C., Wang, T., Wang, L., Hu, Z., Cui, Z., Li, J., Dong, S., Zhou, X., and Cui, G.: Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6, 1901036 (2019).CrossRefGoogle ScholarPubMed
Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503 (2014).CrossRefGoogle ScholarPubMed
Zhou, Q., Ma, J., Dong, S., Li, X., and Cui, G.: Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, e1902029 (2019).CrossRefGoogle ScholarPubMed
Zaheer, M., Xu, H., Wang, B., Li, L., and Deng, Y.: An in situ polymerized comb-like PLA/PEG-based solid polymer electrolyte for lithium metal batteries. J. Electrochem. Soc. 167, 070504 (2020).CrossRefGoogle Scholar
Takahashi, Y. and Tadokoro, H.: Structural studies of polyethers, (–(CH2)m–O–)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 6, 672 (1973).CrossRefGoogle Scholar
Gadjourova, Z., Andreev, Y.G., Tunstall, D.P., and Bruce, P.G.: Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520 (2001).CrossRefGoogle ScholarPubMed
Cheng, S., Smith, D.M., and Li, C.Y.: How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules 47, 3978 (2014).CrossRefGoogle Scholar
Zhou, Q., Zhang, J., and Cui, G.: Rigid–flexible coupling polymer electrolytes toward high-energy lithium batteries. Macromol. Mater. Eng. 303, 1800337 (2018).CrossRefGoogle Scholar
Matsubara, K., Kaneuchi, R., and Maekita, N.: 13C NMR estimation of preferential solvation of lithium ions in non-aqueous mixed solvents. J. Chem. Soc., Faraday Trans. 94, 3601 (1998).CrossRefGoogle Scholar
Ong, M.T., Verners, O., Draeger, E.W., van Duin, A.C.T., Lordi, V., and Pask, J.E.: Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. J. Phys. Chem. B 119, 1535 (2015).CrossRefGoogle ScholarPubMed
Bogle, X., Vazquez, R., Greenbaum, S., Cresce, A.v.W., and Xu, K.: Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 4, 1664 (2013).CrossRefGoogle Scholar
Tominaga, Y. and Yamazaki, K.: Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50, 4448 (2014).CrossRefGoogle ScholarPubMed
Kimura, K., Motomatsu, J., and Tominaga, Y.: Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385 (2016).CrossRefGoogle Scholar
Okumura, T. and Nishimura, S.: Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics 267, 68 (2014).CrossRefGoogle Scholar
Doyle, M., Fuller, T.F., and Newman, J.: The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 39, 2073 (1994).CrossRefGoogle Scholar
Thomas, K.E., Sloop, S.E., Kerr, J.B., and Newman, J.: Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 89, 132 (2000).CrossRefGoogle Scholar
Doyle, M. and Newman, J.: The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim. Acta 40, 2191 (1995).CrossRefGoogle Scholar
Brissot, C., Rosso, M., Chazalviel, J.N., and Lascaud, S.: Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925 (1999).CrossRefGoogle Scholar
Gorecki, W., Jeannin, M., Belorizky, E., Roux, C., and Armand, M.: Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J. Phys.: Condens. Matter 7, 6823 (1995).Google Scholar
Borodin, O. and Smith, G.D.: Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 39, 1620 (2006).CrossRefGoogle Scholar
Mao, G., Saboungi, M.-L., Price, D.L., Armand, M.B., and Howells, W.S.: Structure of liquid PEO-LiTFSI electrolyte. Phys. Rev. Lett. 84, 5536 (2000).CrossRefGoogle ScholarPubMed
Kim, C.S. and Oh, S.M.: Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim. Acta 45, 2101 (2000).CrossRefGoogle Scholar
Chen, L., Venkatram, S., Kim, C., Batra, R., Chandrasekaran, A., and Ramprasad, R.: Electrochemical stability window of polymeric electrolytes. Chem. Mater. 31, 4598 (2019).CrossRefGoogle Scholar
Mindemark, J., Sun, B., Törmä, E., and Brandell, D.: High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 298, 166 (2015).CrossRefGoogle Scholar
Manuel Stephan, A. and Nahm, K.S.: Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952 (2006).CrossRefGoogle Scholar
Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363 (2017).CrossRefGoogle Scholar
Cheng, X.B., Hou, T.Z., Zhang, R., Peng, H.J., Zhao, C.Z., Huang, J.Q., and Zhang, Q.: Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888 (2016).CrossRefGoogle ScholarPubMed
Yang, Q., Li, W., Dong, C., Ma, Y., Yin, Y., Wu, Q., Xu, Z., Ma, W., Fan, C., and Sun, K.: PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem. 42, 83 (2020).CrossRefGoogle Scholar
Sun, B., Mindemark, J., Edstrom, K., and Brandell, D.: Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 262, 738 (2014).CrossRefGoogle Scholar
Silva, M.M., Barros, S.C., Smith, M.J., and MacCallum, J.R.: Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 49, 1887 (2004).CrossRefGoogle Scholar
Barbosa, P.C., Rodrigues, L.C., Silva, M.M., and Smith, M.J.: Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 193, 39 (2011).CrossRefGoogle Scholar
Kobayashi, S.: Enzymatic ring-opening polymerization and polycondensation for the green synthesis of polyesters. Polym. Adv. Technol. 26, 677 (2015).CrossRefGoogle Scholar
Artham, T. and Doble, M.: Biodegradation of aliphatic and aromatic polycarbonates. Macromol. Biosci. 8, 14 (2008).CrossRefGoogle ScholarPubMed
Cameron, D.J.A. and Shaver, M.P.: Aliphatic polyester polymer stars: Synthesis, properties and applications in biomedicine and nanotechnology. Chem. Soc. Rev. 40, 1761 (2011).CrossRefGoogle ScholarPubMed
Brannigan, R.P. and Dove, A.P.: Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 5, 9 (2017).CrossRefGoogle Scholar
Dai, Y. and Zhang, X.: Recent development of functional aliphatic polycarbonates for the construction of amphiphilic polymers. Polym. Chem. 8, 7429 (2017).CrossRefGoogle Scholar
Hussain, T., Tausif, M., and Ashraf, M.: A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics. J. Clean. Prod. 108, 476 (2015).CrossRefGoogle Scholar
Yu, Y., Wu, D., Liu, C., Zhao, Z., Yang, Y., and Li, Q.: Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review. Process Biochem. 47, 1027 (2012).CrossRefGoogle Scholar
Malmstroem, E., Johansson, M., and Hult, A.: Hyperbranched aliphatic polyesters. Macromolecules 28, 1698 (1995).CrossRefGoogle Scholar
Undin, J., Plikk, P., Finne-Wistrand, A., and Albertsson, A.-C.: Synthesis of amorphous aliphatic polyester-ether homo- and copolymers by radical polymerization of ketene acetals. J. Polym. Sci., Part A: Polym. Chem. 48, 4965 (2010).CrossRefGoogle Scholar
Mehta, R., Kumar, V., Bhunia, H., and Upadhyay, S.N.: Synthesis of poly(lactic acid): A review. J. Macromol. Sci. Part C: Polym. Rev. 45, 325 (2005).CrossRefGoogle Scholar
Jiang, Z.: Lipase-catalyzed synthesis of aliphatic polyesters via copolymerization of lactone, dialkyl diester, and diol. Biomacromolecules 9, 3246 (2008).CrossRefGoogle ScholarPubMed
Varma, I.K., Albertsson, A.-C., Rajkhowa, R., and Srivastava, R.K.: Enzyme catalyzed synthesis of polyesters. Prog. Polym. Sci. 30, 949 (2005).CrossRefGoogle Scholar
Zhang, J., Shi, H., Wu, D., Xing, Z., Zhang, A., Yang, Y., and Li, Q.: Recent developments in lipase-catalyzed synthesis of polymeric materials. Process Biochem. 49, 797 (2014).CrossRefGoogle Scholar
Douka, A., Vouyiouka, S., Papaspyridi, L.-M., and Papaspyrides, C.D.: A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog. Polym. Sci. 79, 1 (2018).CrossRefGoogle Scholar
Williams, C.K.: Synthesis of functionalized biodegradable polyesters. Chem. Soc. Rev. 36, 1573 (2007).CrossRefGoogle ScholarPubMed
Liu, Z.-L., Zhou, Y., and Zhuo, R.-X.: Synthesis and properties of functional aliphatic polycarbonates. J. Polym. Sci., Part A: Polym. Chem. 41, 4001 (2003).CrossRefGoogle Scholar
Wang, X.-L., Zhuo, R.-X., Liu, L.-J., He, F., and Liu, G.: Synthesis and characterization of novel aliphatic polycarbonates. J. Polym. Sci., Part A: Polym. Chem. 40, 70 (2002).CrossRefGoogle Scholar
Tempelaar, S., Mespouille, L., Coulembier, O., Dubois, P., and Dove, A.P.: Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 42, 1312 (2013).CrossRefGoogle ScholarPubMed
Gross, R., Kalra, B., and Kumar, A.: Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Appl. Microbiol. Biotechnol. 55, 655 (2001).CrossRefGoogle ScholarPubMed
Taherimehr, M. and Pescarmona, P.P.: Green polycarbonates prepared by the copolymerization of CO2 with epoxides. J. Appl. Polym. Sci. 131, 41141 (2014).CrossRefGoogle Scholar
Tamura, M., Ito, K., Honda, M., Nakagawa, Y., Sugimoto, H., and Tomishige, K.: Direct copolymerization of CO2 and diols. Sci. Rep. 6, 24038 (2016).CrossRefGoogle ScholarPubMed
Carothers, W.H., Dorough, G.L., and Natta, F.J.v.: Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J. Am. Chem. Soc. 54, 761 (1932).CrossRefGoogle Scholar
Bendler, J.T.: Handbook of Polycarbonate Science and Technology, 1st ed. (CRC Press, New York, 1999).CrossRefGoogle Scholar
Zhu, W., Huang, X., Li, C., Xiao, Y., Zhang, D., and Guan, G.: High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: Synthesis and characterization. Polym. Int. 60, 1060 (2011).CrossRefGoogle Scholar
Park, J.H., Jeon, J.Y., Lee, J.J., Jang, Y., Varghese, J.K., and Lee, B.Y.: Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 46, 3301 (2013).CrossRefGoogle Scholar
Mespouille, L., Coulembier, O., Kawalec, M., Dove, A.P., and Dubois, P.: Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog. Polym. Sci. 39, 1144 (2014).CrossRefGoogle Scholar
Möller, M., Hedrick, J.L., Degée, P., and Dubois, P.: Ring opening polymerization. In Encyclopedia of Materials: Science and Technology, Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. and Veyssière, P., eds. (Elsevier, Oxford, 2001); p. 8202.CrossRefGoogle Scholar
Jérôme, C. and Lecomte, P.: Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Delivery Rev. 60, 1056 (2008).CrossRefGoogle ScholarPubMed
Paul, S., Zhu, Y., Romain, C., Brooks, R., Saini, P.K., and Williams, C.K.: Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates. Chem. Commun. 51, 6459 (2015).CrossRefGoogle ScholarPubMed
Xu, J., Feng, E., and Song, J.: Renaissance of aliphatic polycarbonates: New techniques and biomedical applications. J. Appl. Polym. Sci. 131, 39822 (2014).CrossRefGoogle ScholarPubMed
D’Alessandro, D.M., Smit, B., and Long, J.R.: Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 49, 6058 (2010).CrossRefGoogle ScholarPubMed
Fukuoka, S., Kawamura, M., Komiya, K., Tojo, M., Hachiya, H., Hasegawa, K., Aminaka, M., Okamoto, H., Fukawa, I., and Konno, S.: A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 5, 497 (2003).CrossRefGoogle Scholar
Darensbourg, D.J., Mackiewicz, R.M., Phelps, A.L., and Billodeaux, D.R.: Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc. Chem. Res. 37, 836 (2004).CrossRefGoogle ScholarPubMed
Sugimoto, H. and Inoue, S.: Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part A: Polym. Chem. 42, 5561 (2004).CrossRefGoogle Scholar
Inoue, S., Koinuma, H., and Tsuruta, T.: Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 7, 287 (1969).CrossRefGoogle Scholar
Lu, X.-B., Ren, W.-M., and Wu, G.-P.: CO2 copolymers from epoxides: Catalyst activity, product selectivity, and stereochemistry control. Acc. Chem. Res. 45, 1721 (2012).CrossRefGoogle ScholarPubMed
Coates, G.W. and Moore, D.R.: Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: Discovery, reactivity, optimization, and mechanism. Angew. Chem., Int. Ed. 43, 6618 (2004).CrossRefGoogle ScholarPubMed
Albertsson, A.-C. and Varma, I.K.: Aliphatic Polyesters: Synthesis, Properties and Applications, Degradable Aliphatic Polyesters (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002); p. 1.Google Scholar
Park, E.-S., Cho, H.-C., Kim, M.-N., and Yoon, J.-S.: Chain extension and mechanical properties of unsaturated aliphatic copolyesters based on poly(L-lactic acid). J. Appl. Polym. Sci. 90, 1802 (2003).CrossRefGoogle Scholar
Eyvazzadeh Kalajahi, A., Rezaei, M., Abbasi, F., and Mir Mohamad Sadeghi, G.: The effect of chain extender type on the physical, mechanical, and shape memory properties of poly(ε-caprolactone)-based polyurethane-ureas. Polym. Plast. Technol. Eng. 56, 1977 (2017).CrossRefGoogle Scholar
Zhao, J.-B., Wu, X.-F., and Yang, W.-T.: Synthesis of aliphatic polyesters by a chain-extending reaction with octamethylcyclotetrasilazane and hexaphenylcyclotrisilazane as chain extenders. J. Appl. Polym. Sci. 92, 3333 (2004).CrossRefGoogle Scholar
Löfgren, A., Albertsson, A.-C., Dubois, P., and Jérôme, R.: Recent advances in ring-opening polymerization of lactones and related compounds. J. Macromol. Sci. Part C: Polym. Rev. 35, 379 (1995).CrossRefGoogle Scholar
Webb, A.R., Yang, J., and Ameer, G.A.: Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4, 801 (2004).CrossRefGoogle ScholarPubMed
Tokiwa, Y. and Calabia, B.P.: Review degradation of microbial polyesters. Biotechnol. Lett. 26, 1181 (2004).CrossRefGoogle ScholarPubMed
Silvers, A.L., Chang, C.-C., Parrish, B., and Emrick, T.: Strategies in Aliphatic Polyester Synthesis for Biomaterial and Drug Delivery Applications, Degradable Polymers and Materials: Principles and Practice, 2nd ed. (American Chemical Society, Washington D.C., 2012); p. 237.Google Scholar
Hakkarainen, M.: Aliphatic Polyesters: Abiotic and Biotic Degradation and Degradation Products (Degradable Aliphatic Polyesters, Springer, Berlin, Heidelberg, 2002); p. 113.CrossRefGoogle Scholar
Hilf, J. and Frey, H.: Propargyl-functional aliphatic polycarbonate obtained from carbon dioxide and glycidyl propargyl ether. Macromol. Rapid Commun. 34, 1395 (2013).CrossRefGoogle ScholarPubMed
Liu, F., Yang, J., Fan, Z., Li, S., Kasperczyk, J., and Dobrzynski, P.: Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida Antarctica and Hog pancreas. J. Biomater. Sci. Polym. Ed. 23, 1355 (2012).CrossRefGoogle ScholarPubMed
Kaplan, M.L., Rietman, E.A., Cava, R.J., Holt, L.K., and Chandross, E.A.: Crown ether enhancement of ionic conductivity in a polymer-salt system. Solid State Ionics 25, 37 (1987).CrossRefGoogle Scholar
Wei, X. and Shriver, D.F.: Highly conductive polymer electrolytes containing rigid polymers. Chem. Mater. 10, 2307 (1998).CrossRefGoogle Scholar
Matsumoto, K., Kakehashi, M., Ouchi, H., Yuasa, M., and Endo, T.: Synthesis and properties of polycarbosilanes having 5-membered cyclic carbonate groups as solid polymer electrolytes. Macromolecules 49, 9441 (2016).CrossRefGoogle Scholar
Chai, J., Liu, Z., Ma, J., Wang, J., Liu, X., Liu, H., Zhang, J., Cui, G., and Chen, L.: In situ generation of poly(vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2017).CrossRefGoogle ScholarPubMed
Xu, H., Bijleveld, J., Hedge, M., and Dingemans, T.: Synthesis and characterization of aromatic-PDMS segmented block copolymers and their shape-memory performance. Polym. Chem. 10, 5052 (2019).CrossRefGoogle Scholar
Soo, P.P., Huang, B., Jang, Y.I., Chiang, Y.M., Sadoway, D.R., and Mayes, A.M.: Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J. Electrochem. Soc. 146, 32 (1999).CrossRefGoogle Scholar
Mitsuda, H., Uno, T., Kubo, M., and Itoh, T.: Solid polymer electrolytes based on poly(1,3-diacetyl-4-imidazolin-2-one). Polym. Bull. 57, 313 (2006).CrossRefGoogle Scholar
Itoh, T., Fujita, K., Inoue, K., Iwama, H., Kondoh, K., Uno, T., and Kubo, M.: Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate. Electrochim. Acta 112, 221 (2013).CrossRefGoogle Scholar
Wang, P., Chai, J., Zhang, Z., Zhang, H., Ma, Y., Xu, G., Du, H., Liu, T., Li, G., and Cui, G.: An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J. Mater. Chem. A 7, 5295 (2019).CrossRefGoogle Scholar
Britz, J., Meyer, W.H., and Wegner, G.: Blends of poly(meth)acrylates with 2-oxo-(1,3)dioxolane side chains and lithium salts as lithium ion conductors. Macromolecules 40, 7558 (2007).CrossRefGoogle Scholar
Tominaga, Y.: Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polym. J. 49, 291 (2017).CrossRefGoogle Scholar
Spiegel, E.F., Adamic, K.J., Williams, B.D., and Sammells, A.F.: Solvation of lithium salts within single-phase dimethyl siloxane bisphenol—A carbonate block copolymer. Polymer 41, 3365 (2000).CrossRefGoogle Scholar
Matsumoto, M., Uno, T., Kubo, M., and Itoh, T.: Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties. Ionics 19, 615 (2013).CrossRefGoogle Scholar
Abdul-Karim, R., Hameed, A., and Malik, M.I.: Ring-opening polymerization of ethylene carbonate: Comprehensive structural elucidation by 1D & 2D-NMR techniques, and selectivity analysis. RSC Adv. 7, 11786 (2017).CrossRefGoogle Scholar
Lee, J.-C. and Litt, M.H.: Ring-opening polymerization of ethylene carbonate and depolymerization of poly(ethylene oxide-co-ethylene carbonate). Macromolecules 33, 1618 (2000).CrossRefGoogle Scholar
Dukhanin, G.P., Dumler, S.A., Sablin, A.N., and Novakov, I.A.: Solid polymeric electrolyte based on poly(ethylene carbonate)-lithium perchlorate system. Russ. J. Appl. Chem. 82, 243 (2009).CrossRefGoogle Scholar
Tominaga, Y., Nanthana, V., and Tohyama, D.: Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polym. J. 44, 1155 (2012).CrossRefGoogle Scholar
Kimura, K., Hassoun, J., Panero, S., Scrosati, B., and Tominaga, Y.: Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 21, 895 (2015).CrossRefGoogle Scholar
Kimura, K., Matsumoto, H., Hassoun, J., Panero, S., Scrosati, B., and Tominaga, Y.: A quaternary poly(ethylene carbonate)-lithium bis(trifluoromethanesulfonyl)imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim. Acta 175, 134 (2015).CrossRefGoogle Scholar
Motomatsu, J., Kodama, H., Furukawa, T., and Tominaga, Y.: Dielectric relaxation behavior of a poly(ethylene carbonate)-lithium bis-(trifluoromethanesulfonyl) imide electrolyte. Macromol. Chem. Phys. 216, 1660 (2015).CrossRefGoogle Scholar
Tominaga, Y., Yamazaki, K., and Nanthana, V.: Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J. Electrochem. Soc. 162, A3133 (2015).CrossRefGoogle Scholar
Kimura, K., Motomatsu, J., and Tominaga, Y.: Highly concentrated polycarbonate-based solid polymer electrolytes having extraordinary electrochemical stability. J. Polym. Sci., Part B: Polym. Phys. 54, 2442 (2016).CrossRefGoogle Scholar
Kimura, K., Yajima, M., and Tominaga, Y.: A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 66, 46 (2016).CrossRefGoogle Scholar
Morioka, T., Ota, K., and Tominaga, Y.: Effect of oxyethylene side chains on ion-conductive properties of polycarbonate-based electrolytes. Polymer 84, 21 (2016).CrossRefGoogle Scholar
Morioka, T., Nakano, K., and Tominaga, Y.: Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer. Macromol. Rapid Commun. 38, 1600652 (2017).CrossRefGoogle ScholarPubMed
Motomatsu, J., Kodama, H., Furukawa, T., and Tominaga, Y.: Dielectric relaxation and ionic transport in poly(ethylene carbonate)-based electrolytes. Polym. Adv. Technol. 28, 362 (2017).CrossRefGoogle Scholar
Kimura, K. and Tominaga, Y.: Understanding electrochemical stability and lithium ion-dominant transport in concentrated poly(ethylene carbonate) electrolyte. ChemElectroChem 5, 4008 (2018).CrossRefGoogle Scholar
Munshi, M.Z.A., Owens, B.B., and Nguyen, S.: Measurement of Li+ ion transport numbers in poly(ethylene oxide)–LiX complexes. Polym. J. 20, 597 (1988).CrossRefGoogle Scholar
Tominaga, Y., Shimomura, T., and Nakamura, M.: Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes. Polymer 51, 4295 (2010).CrossRefGoogle Scholar
Nakamura, M. and Tominaga, Y.: Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers. Electrochim. Acta 57, 36 (2011).CrossRefGoogle Scholar
Smith, M.J., Silva, M.M., Cerqueira, S., and MacCallum, J.R.: Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate). Solid State Ionics 140, 345 (2001).CrossRefGoogle Scholar
Manuela Silva, M., Barbosa, P., Evans, A., and Smith, M.J.: Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate. Solid State Sci. 8, 1318 (2006).CrossRefGoogle Scholar
Sun, B., Mindemark, J., Edström, K., and Brandell, D.: Realization of high performance polycarbonate-based Li polymer batteries. Electrochem. Commun. 52, 71 (2015).CrossRefGoogle Scholar
Sun, B., Xu, C., Mindemark, J., Gustafsson, T., Edström, K., and Brandell, D.: At the polymer electrolyte interfaces: The role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994 (2015).CrossRefGoogle Scholar
Sun, B., Mindemark, J., Morozov, E.V., Costa, L.T., Bergman, M., Johansson, P., Fang, Y., Furó, I., and Brandell, D.: Ion transport in polycarbonate based solid polymer electrolytes: Experimental and computational investigations. Phys. Chem. Chem. Phys. 18, 9504 (2016).CrossRefGoogle ScholarPubMed
Meabe, L., Lago, N., Rubatat, L., Li, C., Müller, A.J., Sardon, H., Armand, M., and Mecerreyes, D.: Polycondensation as a versatile synthetic route to aliphatic polycarbonates for solid polymer electrolytes. Electrochim. Acta 237, 259 (2017).CrossRefGoogle Scholar
He, W., Cui, Z., Liu, X., Cui, Y., Chai, J., Zhou, X., Liu, Z., and Cui, G.: Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim. Acta 225, 151 (2017).CrossRefGoogle Scholar
Liu, X., Ding, G., Zhou, X., Li, S., He, W., Chai, J., Pang, C., Liu, Z., and Cui, G.: An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J. Mater. Chem. A 5, 11124 (2017).CrossRefGoogle Scholar
Jung, Y.-C., Park, M.-S., Kim, D.-H., Ue, M., Eftekhari, A., and Kim, D.-W.: Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries. Sci. Rep. 7, 17482 (2017).CrossRefGoogle ScholarPubMed
Melchiors, M., Keul, H., and Höcker, H.: Preparation and properties of solid electrolytes on the basis of alkali metal salts and poly(2,2-dimethyltrimethylene carbonate)-block-poly(ethylene oxide)-block-poly(2,2-dimethyltrimethylene carbonate). Polymer 37, 1519 (1996).CrossRefGoogle Scholar
Elmér, A.M. and Jannasch, P.: Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes. J. Polym. Sci., Part A: Polym. Chem. 44, 2195 (2006).CrossRefGoogle Scholar
Yu, X., Xiao, M., Wang, S., Han, D., and Meng, Y.: Fabrication and properties of crosslinked poly(propylene carbonate maleate) gel polymer electrolyte for lithium-ion battery. J. Appl. Polym. Sci. 118, 2078 (2010).Google Scholar
Kwon, S.-J., Kim, D.-G., Shim, J., Lee, J.H., Baik, J.-H., and Lee, J.-C.: Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 55, 2799 (2014).CrossRefGoogle Scholar
Deng, K., Wang, S., Ren, S., Han, D., Xiao, M., and Meng, Y.: A novel single-ion-conducting polymer electrolyte derived from CO2-based multifunctional polycarbonate. ACS Appl. Mater. Interfaces 8, 33642 (2016).CrossRefGoogle ScholarPubMed
Meabe, L., Goujon, N., Li, C., Armand, M., Forsyth, M., and Mecerreyes, D.: Single-ion conducting poly(ethylene oxide carbonate) as solid polymer electrolyte for lithium batteries. Batteries Supercaps 3, 68 (2020).CrossRefGoogle Scholar
Huang, X., Huang, J., Wu, J., Yu, X., Gao, Q., Luo, Y., and Hu, H.: Fabrication and properties of polybutadiene rubber-interpenetrating cross-linking poly(propylene carbonate) network as gel polymer electrolytes for lithium-ion battery. RSC Adv. 5, 52978 (2015).CrossRefGoogle Scholar
Huang, X., Zeng, S., Liu, J., He, T., Sun, L., Xu, D., Yu, X., Luo, Y., Zhou, W., and Wu, J.: High-performance electrospun poly(vinylidene fluoride)/poly(propylene carbonate) gel polymer electrolyte for lithium-ion batteries. J. Phys. Chem. C 119, 27882 (2015).CrossRefGoogle Scholar
Zhao, J., Zhang, J., Hu, P., Ma, J., Wang, X., Yue, L., Xu, G., Qin, B., Liu, Z., Zhou, X., and Cui, G.: A sustainable and rigid-flexible coupling cellulose-supported poly(propylene carbonate) polymer electrolyte towards 5 V high voltage lithium batteries. Electrochim. Acta 188, 23 (2016).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., and Passerini, S.: Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 5, 1016 (2003).CrossRefGoogle Scholar
Shin, J.-H., Henderson, W.A., and Passerini, S.: PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J. Electrochem. Soc. 152, A978 (2005).CrossRefGoogle Scholar
Wu, H., Xu, Y., Ren, X., Liu, B., Engelhard, M.H., Ding, M.S., El-Khoury, P.Z., Zhang, L., Li, Q., Xu, K., Wang, C., Zhang, J.-G., and Xu, W.: Polymer-in-“Quasi-ionic liquid” electrolytes for high-voltage lithium metal batteries. Adv. Energy Mater. 9, 1902108 (2019).CrossRefGoogle Scholar
Zhou, D., Zhou, R., Chen, C., Yee, W.-A., Kong, J., Ding, G., and Lu, X.: Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J. Phys. Chem. B 117, 7783 (2013).CrossRefGoogle Scholar
Zhang, J., Zang, X., Wen, H., Dong, T., Chai, J., Li, Y., Chen, B., Zhao, J., Dong, S., Ma, J., Yue, L., Liu, Z., Guo, X., Cui, G., and Chen, L.: High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940 (2017).CrossRefGoogle Scholar
He, Z., Chen, L., Zhang, B., Liu, Y., and Fan, L.: Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 392, 232 (2018).CrossRefGoogle Scholar
Imholt, L., Dörr, T.S., Zhang, P., Ibing, L., Cekic-Laskovic, I., Winter, M., and Brunklaus, G.: Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. J. Power Sources 409, 148 (2019).CrossRefGoogle Scholar
Zhu, M., Wu, J., Wang, Y., Song, M., Long, L., Siyal, S.H., Yang, X., and Sui, G.: Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126 (2019).CrossRefGoogle Scholar
Florjańczyk, Z., Zygadło-Monikowska, E., Wieczorek, W., Ryszawy, A., Tomaszewska, A., Fredman, K., Golodnitsky, D., Peled, E., and Scrosati, B.: Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts. J. Phys. Chem. B 108, 14907 (2004).CrossRefGoogle Scholar
Łasińska, A.K., Marzantowicz, M., Dygas, J.R., Krok, F., Florjańczyk, Z., Tomaszewska, A., Zygadło-Monikowska, E., Żukowska, Z., and Lafont, U.: Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim. Acta 169, 61 (2015).CrossRefGoogle Scholar
Florjańczyk, Z., Zygadło-Monikowska, E., Affek, A., Tomaszewska, A., Łasińska, A., Marzantowicz, M., Dygas, J.R., and Krok, F.: Polymer electrolytes based on acrylonitrile–butyl acrylate copolymers and lithium bis(trifluoromethanesulfone)imide. Solid State Ionics 176, 2123 (2005).CrossRefGoogle Scholar
Wu, I.D. and Chang, F.-C.: Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989 (2007).CrossRefGoogle Scholar
Ravi, M., Song, S.-H., Gu, K.-M., Tang, J.-N., and Zhang, Z.-Y.: Effect of lithium thiocyanate addition on the structural and electrical properties of biodegradable poly(ε-caprolactone) polymer films. Ionics 21, 2171 (2015).CrossRefGoogle Scholar
Ravi, M., Song, S., Gu, K., Tang, J., and Zhang, Z.: Electrical properties of biodegradable poly(ɛ-caprolactone): Lithium thiocyanate complexed polymer electrolyte films. Mater. Sci. Eng., B 195, 74 (2015).CrossRefGoogle Scholar
Polo Fonseca, C. and Neves, S.: Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 159, 712 (2006).CrossRefGoogle Scholar
Fonseca, C.P., Rosa, D.S., Gaboardi, F., and Neves, S.: Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 155, 381 (2006).CrossRefGoogle Scholar
Lin, C.-K. and Wu, I.D.: Investigating the effect of interaction behavior on the ionic conductivity of polyester/LiClO4 blend systems. Polymer 52, 4106 (2011).CrossRefGoogle Scholar
Watanabe, M., Togo, M., Sanui, K., Ogata, N., Kobayashi, T., and Ohtaki, Z.: Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate. Macromolecules 17, 2908 (1984).CrossRefGoogle Scholar
Watanabe, M., Rikukawa, M., Sanui, K., Ogata, N., Kato, H., Kobayashi, T., and Ohtaki, Z.: Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate. Macromolecules 17, 2902 (1984).CrossRefGoogle Scholar
Watanabe, M., Rikukawa, M., Sanui, K., and Ogata, N.: Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyester and alkali metal thiocyanate. Macromolecules 19, 188 (1986).CrossRefGoogle Scholar
Dupon, R., Papke, B.L., Ratner, M.A., and Shriver, D.F.: Ion transport in the polymer electrolytes formed between poly(ethylene succinate) and lithium tetrafluoroborate. J. Electrochem. Soc. 131, 586 (1984).CrossRefGoogle Scholar
Lee, Y.-C., Ratner, M.A., and Shriver, D.F.: Ionic conductivity in the poly(ethylene malonate)/lithium triflate system. Solid State Ionics 138, 273 (2001).CrossRefGoogle Scholar
Pesko, D.M., Jung, Y., Hasan, A.L., Webb, M.A., Coates, G.W., Miller, T.F., and Balsara, N.P.: Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ionics 289, 118 (2016).CrossRefGoogle Scholar
Webb, M.A., Jung, Y., Pesko, D.M., Savoie, B.M., Yamamoto, U., Coates, G.W., Balsara, N.P., Wang, Z.-G., and Miller, T.F.: Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198 (2015).CrossRefGoogle ScholarPubMed
Van Horn, R.M., Steffen, M.R., and O’Connor, D.: Recent progress in block copolymer crystallization. Polym. Cryst. 1, e10039 (2018).Google Scholar
Mindemark, J., Törmä, E., Sun, B., and Brandell, D.: Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer 63, 91 (2015).CrossRefGoogle Scholar