Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:29:34.013Z Has data issue: false hasContentIssue false

Vanilla insignis Ames. (Orchidaceae): morphological variation of the labellum in Quintana Roo, Mexico

Published online by Cambridge University Press:  01 September 2023

B. Edgar Herrera-Cabrera*
Affiliation:
Postgrado en Estrategias para el Desarrollo Agrícola Regional, Colegio de Postgraduados - Campus Puebla, Boulevard Forjadores No 205 Santiago Momoxpan, Puebla. C.P. 72760, México
Néstor Hernández-Silva
Affiliation:
Universidad del Istmo, Campus Tehuantepec, Ciudad Universitaria S/N, Barrio Santa Cruz, 4ª Sección Sto. Domingo Tehuantepec, Oaxaca C.P. 70760, México
Adriana Delgado-Alvarado
Affiliation:
Postgrado en Estrategias para el Desarrollo Agrícola Regional, Colegio de Postgraduados - Campus Puebla, Boulevard Forjadores No 205 Santiago Momoxpan, Puebla. C.P. 72760, México
Agustín Maceda
Affiliation:
Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Ciudad de Mexico, México
*
Corresponding author: B. Edgar Herrera-Cabrera; Email: [email protected]

Abstract

The shape of the flower can vary based on the type of pollinator or the environment in which the plant develops. In Vanilla insignis, there are no studies that analyse the shape of the labellum of the flower as has been done in V. planifolia. Therefore, the study aimed to determine the variation in the shape of the labellum of V. insignis through a morphometric analysis in different environmental conditions in the state of Quintana Roo, Mexico. The results showed that there were significant differences in the variables analysed. Principal component analysis and dendrogram analysis reveal that four V. insignis morphotypes were possibly associated with soil water availability conditions because there were significant differences between the variables that define the apical region. In addition, the distribution of the morphotypes corresponded with the presence of humidity regardless of geographical distances such as in the populations of Tenampulco, Puebla and Caobas, Quintana Roo. The presence of these morphotypes allows the development of conservation programmes and genetic improvement of the species of V. insignis and related commercial species.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, JD and Galarza-Pérez, M (1991) Patterns and maintenance of extraordinary variation in the Caribbean orchid Tolumnia (Oncidium) variegata. Systematic Botany 16, 182194.10.2307/2418982CrossRefGoogle Scholar
Ackerman, JD, Cuevas, AA and Hof, D (2011) Are deception-pollinated species more variable than those offering a reward? Plant Systematics and Evolution 293, 9199.10.1007/s00606-011-0430-6CrossRefGoogle Scholar
Bateman, RM and Rudall, PJ (2006) Evolutionary and morphometric implications of morphological variation among flowers within an inflorescence: a case-study using European orchids. Annals of Botany 98, 975993.CrossRefGoogle ScholarPubMed
Bateman, RM and Rudall, PJ (2011) The life and death of a mythical British endemic, Orchis militaris L. var. Tenuifrons P.D. Sell: why infraspecific taxonomy requires a field-based morphometric approach. New Journal of Botany 1, 98–11.CrossRefGoogle Scholar
Bedeian, AG and Mossholder, KW (2000) On the use of the coefficient of Variation as a measure of diversity. Organizational Research Methods 3, 285297.10.1177/109442810033005CrossRefGoogle Scholar
Blinova, IV (2012) Intra-and interspecific morphological variation of some European terrestrial orchids along a latitudinal gradient. Russian Journal of Ecology 43, 111116.CrossRefGoogle Scholar
Borba, EL, Funch, RR, Ribeiro, PL, Smidt, EC and Silva-Pereira, V (2007) Demography, and genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae in the Chapada Diamantina, Brazil. Plant Systematics and Evolution 267, 129146.10.1007/s00606-007-0555-9CrossRefGoogle Scholar
Bunpha, K, Pedersen, H and Sridith, K (2014) How does sampling strategy influence detection of morphological variation in orchids? A case-study of the epiphyte Oberonia hosseusii. Plant Systematics and Evolution 300, 585594.10.1007/s00606-013-0904-9CrossRefGoogle Scholar
Carroll, SP, Dingle, H, Famula, TR and Fox, CW (2001) Genetic architecture of adaptive differentiation in evolving host races of the soapberry bug (Jadera haematoloma). Genetica 112/113, 257272.10.1023/A:1013354830907CrossRefGoogle ScholarPubMed
Catling, PM (1990) Malaxis salazarii, a new species from Mexico and northern Mesoamerica. Orquídea (México, D.F.) 12, 93104.Google Scholar
Chambers, AH (2019) Vanilla (Vanilla spp.) breeding. In Al-Khayri, JM, Jain, SM and Johnson, DV (eds.) Advances in Plant Breeding Strategies: Industrial and Food Crops. Switzerland: Springer Natural, pp. 707734.CrossRefGoogle Scholar
CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2021) Catálogo de metadatos geográficos: Regímenes de humedad del suelo. Available at http://www.conabio.gob.mx/informacion/gis/.Google Scholar
Edwards, CE, Ewers, BE, McClung, CR, Lou, P and Weinig, C (2012) Quantitative variation in water-use efficiency across water regimes and its relationship with circadian, vegetative, reproductive, and leaf gas-exchange traits. Molecular Plant 5, 653668.10.1093/mp/sss004CrossRefGoogle ScholarPubMed
Ellestad, P, Pérez-Farrera, MA, Forest, F and Buerki, S (2022a) Uncovering haplotype diversity in cultivated Mexican vanilla. American Journal of Botany 109, 11201138.10.1002/ajb2.16024CrossRefGoogle ScholarPubMed
Ellestad, P, Pérez-Farrera, MA and Buerki, S (2022b) Genomic insights into cultivated Mexican Vanilla planifolia reveal high levels of heterozygosity stemming from hybridization. Plants 11, 2090.10.3390/plants11162090CrossRefGoogle ScholarPubMed
Essenberg, CJ (2021) Intraspecific relationships between floral signals and rewards with implications for plant fitness. AoB Plants 13, plab006.10.1093/aobpla/plab006CrossRefGoogle ScholarPubMed
Galen, C (1999) Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations. BioScience 49, 631640.10.2307/1313439CrossRefGoogle Scholar
Glenny, WR, Runyon, JB and Burkle, LA (2018) Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation. New Phytologist 220, 785798.CrossRefGoogle ScholarPubMed
Gratani, L (2014) Plant phenotypic plasticity in response to environmental factors. Advances in Botany 2014, 117.CrossRefGoogle Scholar
Halpern, SL, Adler, LS and Wink, M (2010) Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia 163, 961971.10.1007/s00442-010-1651-zCrossRefGoogle ScholarPubMed
Hammer, K and Khoshbakht, K (2015) A domestication assessment of the big five plant families. Genetic Research and Crop Evolution 62, 665689.CrossRefGoogle Scholar
Harder, LD and Johnson, SD (2005) Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society B 272, 26512657.10.1098/rspb.2005.3268CrossRefGoogle ScholarPubMed
Hasing, T, Tang, H, Brym, M, Khazi, F, Huang, T and Chambers, AH (2020) A phased Vanilla planifolia genome enables genetic improvement of flavor and production. Nature Food 1, 811819.CrossRefGoogle ScholarPubMed
Hemborg, Å and Després, L (2011) Floral phenotypic plasticity as a buffering mechanism in the globeflower-fly mutualism. Plant Ecology 212, 12051212.CrossRefGoogle Scholar
Hernández-Ruiz, J, Delgado-Alvarado, A, Salazar-Rojas, VM and Herrera-Cabrera, BE (2020) Morphological variation of the labellum of Vanilla planifolia Andrews (Orchidaceae) in Oaxaca, México. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional UNCuyo 52, 160175.Google Scholar
Hodgins, KA and Barret, SCH (2008) Geographical variation in floral morphology and style-morph ratios in a sexually polymorphic daffodil. American Journal of Botany 95, 185195.10.3732/ajb.95.2.185CrossRefGoogle Scholar
Lima-Morales, M, Herrera-Cabrera, BE and Delgado-Alvarado, A (2021) Intraspecific variation of Vanilla planifolia (Orchidaceae) in the Huasteca region, San Luis Potosí, Mexico: morphometry of floral labellum. Plant Systematics and Evolution 307, 111. doi: 10.1007/s00606-021-01761-4CrossRefGoogle Scholar
Lubinsky, P, Van Dam, MH and Van Dam, AR (2006) Pollination of Vanilla and evolution in Orchidaceae. Lindleyana 75, 926929.Google Scholar
Maceda, A, Delgado-Alvarado, A, Salazar-Rojas, VM and Herrera-Cabrera, BE (2023) Vanilla planifolia Andrews (Orchidaceae). Labelum variation and potential distribution in Hidalgo, Mexico. Diversity 15, 678.10.3390/d15050678CrossRefGoogle Scholar
Morales, M, Ackerman, JD and Tremblay, RL (2010) Morphological flexibility across an environmental gradient in the epiphytic orchid, Tolumnia variegata: complicating patterns of fitness. Botanical Journal of the Linnean Society 163, 431446.10.1111/j.1095-8339.2010.01064.xCrossRefGoogle Scholar
Nattero, J, Sérsic, AN and Cocucci, AA (2011) Geographic variation of floral traits in Nicotiana glauca: relationships with biotic and abiotic factors. Acta Oecologica 37, 503511.CrossRefGoogle Scholar
Paiaro, V, Oliva, GE, Cocucci, AA and Sérsic, AN (2012) Geographic patterns and environmental drivers of flower and leaf variation in an endemic legume of Southern Patagonia. Plant Ecology and Diversity 5, 1325.10.1080/17550874.2012.713403CrossRefGoogle Scholar
Pansarin, ER (2021) Vanilla flowers: much more than food-deception. Botanical Journal of the Linnean Society 20, 117.Google Scholar
Pellissier, L, Vittoz, P, Internicola, AI and Gigord, LDB (2010) Generalized food-deceptive orchid species flower earlier and occur at lower altitudes than rewarding ones. Journal of Plant Ecology 3, 243250.10.1093/jpe/rtq012CrossRefGoogle Scholar
Ramos-Castellá, AL and Iglesias-Andreu, LG (2022) Avances y tendencias en mejoramiento genético de vainilla. Ciencia y Tecnología Agropecuaria 23, e2339.10.21930/rcta.vol23_num2_art:2339CrossRefGoogle Scholar
Rech, AR, Jorge, LR, Ollerton, J and Sazima, M (2018) Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree. Acta Botanica Brasilica 32, 462472.10.1590/0102-33062018abb0220CrossRefGoogle Scholar
Rodríguez-López, T and Martínez-Castillo, J (2019) Exploración actual sobre el conocimiento y uso de la vainilla (Vanilla planifolia Andrews) en las tierras bajas mayas del norte, Yucatán, México. Polibotanica 48, 169184.Google Scholar
Rodríguez-Peña, RA and Wolfe, AD (2023) Flower morphology variation in five species of Penstemon (Plantaginaceae) displaying Hymenoptera pollination syndrome. Botanical Sciences 101, 217232.10.17129/botsci.3084CrossRefGoogle Scholar
Rodrigues, DM, Turchetto, C, Callegari-Jacques SM, and Freitas, LB (2018) Can the reproductive system of a rare and narrowly endemic plant species explain its high genetic diversity? Acta Botanica Brasilica 32, 180187.CrossRefGoogle Scholar
Salazar-Rojas, VM, Herrera-Cabrera, BE, Soto-Arenas, MA and Castillo-Gonzalez, F (2010) Morphological variation in Laelia anceps subsp. dawsonii f. chilapensis Soto-Arenas (Orchidaceae) in traditional home gardens of Chilapa, Guerrero, Mexico. Genetic Resources and Crop Evolution 57, 543552.10.1007/s10722-009-9492-5CrossRefGoogle Scholar
SAS, Statistical Analysis Systems (2011) SAS version 9.3. Procedure Guide. SAS Institute Inc., North Carolina 14.Google Scholar
Schlichting, CD and Levin, DA (1984) Phenotypic plasticity in annual Phlox: test of some hypothesis. American Journal of Botany 71, 252260.10.1002/j.1537-2197.1984.tb12511.xCrossRefGoogle Scholar
Sneath, PH and Sokal, RR (1973) Taxonomic structure. In Sneath, PH and Sokal, RR (eds.), Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman, pp. 188308.Google Scholar
Soto-Arenas, MA and Cribb, PJ (2010) A new infrageneric classification and synopsis of the genus Vanilla Plum. ex Mill. (Orchidaceae, Vanillinae). Lankesteriana 9, 355398.Google Scholar
Soto-Arenas, MA and Dressler, RL (2010) A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their ITS region of the nuclear ribosomal DNA. Lankesteriana 9, 85354.Google Scholar
Strauss, SY and Whittall, JB (2006) Non-pollinator agents of selection on floral traits. In Harder, LD and Barrett, SCH (eds.), Ecology and Evolution of Flowers. Oxford: Oxford University Press, pp. 120138.Google Scholar
Toji, T, Ishimoto, N, Egawa, S, Nakase, Y, Hattori, M and Itino, T (2021) Intraspecific convergence of floral size correlates with pollinator size on different mountains: a case study of a bumblebee-pollinated Lamium (Lamiaceae) flowers in Japan. BMC Ecology and Evolution 21, 113.CrossRefGoogle ScholarPubMed
Weber, UK, Nuismer, SL and Espíndola, A (2020) Patterns of floral morphology in relation to climate and floral visitors. Annals of Botany 125, 433445.10.1093/aob/mcz172CrossRefGoogle ScholarPubMed
Westerband, AC, Funk, JL and Barton, KE (2021) Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany 127, 397410.CrossRefGoogle ScholarPubMed
Supplementary material: File

Herrera-Cabrera et al. supplementary material
Download undefined(File)
File 37.3 KB