No CrossRef data available.
Published online by Cambridge University Press: 28 November 2024
In order to improve the performance of $k - \omega $ SST model in turbomachinery, previous studies have used the machine-learning (ML) technique to obtain turbulence models (for example, the ML-RANS EQ model). However, these models do not lead to satisfactory results in complex flows in turbomachinery. In this study, we use non-equilibrium training dataset to obtain a new turbulence model (i.e., the ML-RANS TR-NE-EQ model). Calculations in various cases of turbine cascade flows show that ML-RANS TR-NE-EQ model performs obviously better than ML-RANS EQ model as well as
$k - \omega $ SST model.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.