Published online by Cambridge University Press: 01 January 2024
Enzymes adsorbed on clay minerals and soil colloids may exhibit lower activities compared to those of free enzymes. A particular toxic metal may affect the activity of the adsorbed enzyme less critically than that of the free form, however. This information is necessary for predicting catalytic performances of clay-immobilized enzymes in natural soils as well as in food, pharmaceutical, and chemical systems. The objective of the present study was to find out how adsorption on palygorskite and sepiolite minerals modifies the catalytic activity and the Michaelis–Menten kinetics of alkaline phosphatase (ALP). Inhibition kinetics of adsorbed ALP by Cd was also compared to that of the free enzyme. The results revealed that the affinity to the substrate and the maximum reaction velocity of ALP decreased upon adsorption on the fibrous clay minerals. The ALP adsorbed maintained a reasonably high activity recovery (AR) compared to the free enzyme. The AR of the adsorbed ALP ranged from 76.9 to 92.5% for palygorskite and from 71.2 to 90.2% for sepiolite, depending on the substrate concentration applied. The presence of Cd decreased the affinity to the substrate of both the free and the adsorbed ALP, while the maximum reaction velocity remained nearly unchanged, indicating that the inhibitory effects of Cd on both the free and adsorbed ALP activities were competitive in nature. The adsorbed enzyme, however, was inhibited less severely by Cd compared to the free enzyme. The adsorption of ALP on the fibrous clay minerals, therefore, maintains the ALP activity to a great extent and provides more resistance for the enzyme against the inhibitory effects of Cd.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.