The Argentine stem weevil (Listronotus bonariensis) was an economically important pest in New Zealand pastures until the release of the parasitoid Microctonus hyperodae. This contribution uses historical data to investigate the regulation of the pest populations prior to, and somewhat during, the establishment of this parasitoid in dryland Canterbury, New Zealand. Thus, a significant goal of this study is to provide an L. bonariensis population dynamics baseline for any future work that aims to analyse the full effects of M. hyperodae on the weevil, now that equilibrium with the weevil host has been reached.
The population dynamics of L. bonariensis, based on a life-table approach, were investigated using data collected regularly for eight years from populations in Canterbury, New Zealand. The key factor affecting end-of-season L. bonariensis density was found to be variation in second generation fourth instar prepupal and pupal mortality. This may have been caused by arrested development and ongoing mortality resulting from the onset of cooler autumnal conditions.
A compensatory response was found in recruitment to the second summer weevil generation, whereby the realised fecundity of the emergent first summer generation of weevils was found to be negatively related to the density of adult weevils per ryegrass tiller. This is the first time that this has been found via long-term population analysis of L. bonariensis, although indications of this have been found elsewhere in caging, pot and small plot experiments.
In this study, the effect of the parasitoid biocontrol agent Microctonus hyperodae on L. bonariensis population dynamics was unclear, as the analysis covered a period when the parasitoid Microctonus hyperodae was introduced and still establishing. It does, however, raise important questions for future analysis in terms of the interaction between parasitism and unrealised fecundity.
The results in this contribution also highlighted regional differences. Overwintering mortality of adult weevils in Canterbury was constant between years, whilst earlier studies in the North Island Waikato region indicated this mortality was density dependent. In addition, the availability of tillers in endophyte-free ryegrass pastures in Canterbury had no influence on egg and early-instar larval survival, which contrasts with the finding from endophytic Waikato pastures.