Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T07:55:04.589Z Has data issue: false hasContentIssue false

Evolution of European Cockchafers (Melolonthinae: Scarabaeidae: Coleoptera): a morphological, molecular and chromosomal study of intra- and inter-specific variations

Published online by Cambridge University Press:  06 January 2011

T. Giannoulis
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
A.-M. Dutrillaux
Affiliation:
UMR 7502, CNRS/MNHN, Structure et Evolution de la Biodiversité, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, CP 39, 16, rue Buffon, F-75005 Paris, France
Z. Mamuris
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
O. Montreuil
Affiliation:
UMR 7502, CNRS/MNHN, Structure et Evolution de la Biodiversité, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, CP 39, 16, rue Buffon, F-75005 Paris, France
C. Stamatis
Affiliation:
Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece
B. Dutrillaux*
Affiliation:
UMR 7502, CNRS/MNHN, Structure et Evolution de la Biodiversité, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, CP 39, 16, rue Buffon, F-75005 Paris, France
*
*Author for correspondence Fax: +33 1 40 79 33 42 E-mail: [email protected]

Abstract

In cockchafers of the genus Melolontha, there is a marked intraspecific polymorphism for morphological characters, making some specimens of one species resemble another. A cytogenetic and molecular (mitochondrial COI gene sequence) study of typical and atypical forms of M. melolontha and M. hippocastani, captured at the same period and area, was performed. Karyotypes and haplotypes clearly characterize each taxon, placing atypical specimens in one or the other species unambiguously. This formally discards the role of hybridization in phenotypic resemblance, as usually proposed. Karyotypes and haplotypes were compared to those of M. pectoralis and Phyllophaga pleei, a more distantly related Melolonthinae, and some Dynastinae species, to reconstruct their ancestral karyotype. The karyotype of M. melolontha is the most derivative and that of P. pleei the most conserved among the Melolonthinae studied, which fits with the phylogeny established by COI gene analysis. Both karyotypes and COI haplotypes demonstrate the proximity of M. pectoralis and M. melolontha. The karyotype of M. melolontha is polymorphic, without relationship with morphological variations. Finally, the existence of similar morphological variations in different Melolontha species and chromosomal polymorphism in M. melolontha is discussed in relation with a network (reticulated) mode of speciation.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljanabi, S.M. & Martinez, I. (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 46924693.CrossRefGoogle ScholarPubMed
Angus, R.B. (1982) Separation of two species standing as Helophorus aquaticus (L.) (Coleoptera, Hydrophylidae) by banded chromosome analysis. Systematic Entomology 7, 265281.CrossRefGoogle Scholar
Avise, J.C. (1994) Molecular Markers, Natural History, and Evolution. New York, USA, Chapman & Hall.CrossRefGoogle Scholar
Baraud, J. (1992) Coléoptères Scarabaeoidea d'Europe: Faune de France, vol. 78. Lyon, France, Société Linnéenne de Lyon.Google Scholar
Brown, W.M. (1985) The mitochondrial genome of animals. pp. 95100 in Macintyre, R.J. (Ed.) Molecular Evolutionary Genetics. New York, USA, Plenum.CrossRefGoogle Scholar
Cameron, S.L., Sullivan, J., Song, H., Miller, K.B. & Whiting, M.F. (2009) A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zoologica Scripta 38, 575590.CrossRefGoogle Scholar
Dutrillaux, B., Couturier, J. & Chauvier, G. (1980) Chromosomal evolution of 19 species or sub-species of Cercopithecinae. Annales de Génétique 23, 133143.Google ScholarPubMed
Dutrillaux, A.-M., Moulin, S. & Dutrillaux, B. (2006) Use of meiotic pachytene stage for karyotypic studies in insects. Chromosome Research 14, 549557.CrossRefGoogle ScholarPubMed
Dutrillaux, A.-M., Xie, H. & Dutrillaux, B. (2007) High chromosomal polymorphism and heterozygosity in Cyclocephala tridentata from Guadeloupe: Chromosome comarison with some other species of Dynastinae (Coleoptera: Scarabaeidae). Cytogenetic and Genome Research 119, 248254.CrossRefGoogle Scholar
Dutrillaux, A.-M., Mercier, J., Xie, H. & Dutrillaux, B. (2008) Etude chromosomique de seize espèces ou sous-espèçes de Cetoniini (Coleoptera: Scarabaeidae: Cetoniinae) d'Europe. Annales de la Société Entomologique de France (n.s.) 44, 443450.CrossRefGoogle Scholar
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. (2005) PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research 33 (Web server issue), W557559.CrossRefGoogle ScholarPubMed
Hunt, T., Bergsten, J., Levkanikova, Z., Papadopoulou, A., St. John, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Gomez-Zurita, J., Ribera, I., Barraclough, T.G., Bocakova, M., Bocak, L. & Vogler, A.P. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 19131916.CrossRefGoogle ScholarPubMed
Juen, A. & Traugott, M. (2006) Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biology and Biochemistry 38, 18721879.CrossRefGoogle Scholar
Moura, R.C., Souza, M.J., Melo, N.F. & Lira-Neto, A.C. (2003) Karyotypic charaterization of representatives from Melolonthinae (Coleoptera: Scarabaeidae). Karyotype analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138, 200206.CrossRefGoogle Scholar
Reinecke, A., Ruther, J. & Hilker, M. (2006) Pre-copulatory isolation in sympatric Melolontha species (Coleoptera: Scarabaeidae). Agricultural and Forest Entomology 8, 289293.CrossRefGoogle Scholar
Richly, E. & Leister, D. (2004) NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution 21, 10811084.CrossRefGoogle ScholarPubMed
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Smith, S.G. & Virkki, N. (1978) Animal Cytogenetics, vol. 3: insecta 5: Coleoptera. Berlin, Germany, Gebrüder Borntraeger.Google Scholar
Svestka, M. (2006) Distribution of tribes of cockchafers of the genus Melolontha in forests of the Czech Republic and the dependence of their swarming on temperature. Journal of Forensic Sciences 52, 520530.Google Scholar
Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512526.Google ScholarPubMed
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 48764882.CrossRefGoogle Scholar
Virkki, N. (1951) Zur Zytologie einiger Scarabaeiden (Coleoptera). Annals of the Zoological Society ‘Vanamo’ 14, 1105.Google Scholar
Wilson, C.J. & Angus, R.B. (2004) A chromosomal analysis of the west European species of Aphodius Illiger, subgenus s.str. (Coleoptera: Aphodiidae). Tijdschrift voor Entomologie 147, 259264.CrossRefGoogle Scholar
Wilson, C.J. & Angus, R.B. (2005) A chromosome analysis of 21 species of Oniticelli and Ontophagini (Coleoptera: Scarabaeidae). Tijdschrift voor Entomologie 148, 6376.CrossRefGoogle Scholar
Yadav, J.S. & Pillai, R.K. (1979) Evolution of karyotypes and phylogenic relationships in Scarabaeidae (Coleoptera). Zoologischer Anzeiger Jena 202, 309318.Google Scholar
Yadav, J.S., Pillai, R.K. & Karamjeet, L. (1979) Chromosome numbers of Scarabaeidae (Polyphaga: Coleoptera). Coleopterists Bulletin 33, 308318.Google Scholar