Published online by Cambridge University Press: 05 October 2023
Preservation of stochastic orders through the system signature has captured the attention of researchers in recent years. Signature-based comparisons have been made for the usual stochastic order, hazard rate order, and likelihood ratio orders. However, for the mean residual life (MRL) order, it has recently been proved that the preservation result does not hold true in general, but rather holds for a particular class of distributions. In this paper, we study whether or not a similar preservation result holds for the mean inactivity time (MIT) order. We prove that the MIT order is not preserved from signatures to system lifetimes with independent and identically distributed (i.i.d.) components, but holds for special classes of distributions. The relationship between these classes and the order statistics is also highlighted. Furthermore, the distribution-free comparison of the performance of coherent systems with dependent and identically distributed (d.i.d.) components is studied under the MIT ordering, using diagonal-dependent copulas and distorted distributions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.