Hostname: page-component-f554764f5-rvxtl Total loading time: 0 Render date: 2025-04-20T11:56:19.521Z Has data issue: false hasContentIssue false

Antioxidant and anti-inflammatory effects of ellagic acid as a new therapy for Trichinella spiralis infection

Published online by Cambridge University Press:  10 December 2024

S.E. Ashoush*
Affiliation:
Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
Z.M. Saeed
Affiliation:
Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
E.K. Soliman
Affiliation:
Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
*
Corresponding author: S.E. Ashoush; Emails: [email protected]; [email protected]

Abstract

Trichinellosis is a widespread food-borne zoonosis, causing mild to severe illness in humans with potential fatality. Its treatment remains challenging due to the side effects and limited efficacy of specific drugs. Therefore, the current study was conducted to assess the therapeutic effects of ellagic acid (EA) alone and combined with albendazole against trichinellosis and its biochemical and pathological alterations in mice. Mice were divided into two main groups: G1 and G2 for the intestinal and muscular phases, respectively. Then each group was subdivided into five subgroups: (a) non-infected control, (b) infected control non-treated, (c) infected and treated with EA, (d) infected and treated with albendazole, and (e) infected and treated with a combination of both. Parasitological, biochemical, and histopathological studies were used to evaluate the therapeutic outcomes. Treatment with EA resulted in a significant reduction of the mean counts of intestinal adult worms and muscular larvae compared to the infected control. EA improved oxidative stress as it reduced nitric oxide and increased catalase activities in intestinal and muscular tissues. Additionally, it alleviated the inflammatory response, as evidenced by downregulating IL-6 and increasing IL-10 expressions in tissues. Furthermore, it improved liver functions and ameliorated the pathological alterations induced by trichinellosis. The best results were detected in combination treatments that indicated synergistic effects between EA and albendazole. In conclusion, EA can be used as an anti-inflammatory and antioxidant with a promising anti-parasitic impact against trichinellosis.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdeltawab, MS, Abdel-Shafi, IR, Aboulhoda, BE, Wanas, H, Saad El-Din, S, Amer, SI, and Hamed, AM (2022) Investigating the effect of the nitric oxide donor L-arginine on albendazole efficacy in Trichinella spiralis-induced myositis and myocarditis in mice. Parasitologists United Journal 15 (1), 6070. doi: 10.21608/puj.2022.119638.1153.CrossRefGoogle Scholar
Aebi, H (1984) Catalase in vitro. Methods Enzymology 105, 121126. doi: 10.1016/S0076-6879(84)05016-3CrossRefGoogle ScholarPubMed
Albogami, B (2023) Ameliorative synergistic therapeutic effect of gallic acid and albendazole against Trichinella spiralis muscular phase infection and assessment of their effects on hepatic and cardiac tissues in male mice. Saudi Journal of Biological Sciences 30, 103763. doi: 10.1016/j.sjbs.2023.103763.CrossRefGoogle ScholarPubMed
Alves, MMM, Arcanjo, DDR, Figueiredo, KA, Oliveira, J SSM, Viana, FJ C, Coelho, ES, Lopes, GLN, Gonçalves, JCR, Carvalho, ALM, Rizzo, MDS, Chaves, MH, Mendonça, IL, and Carvalho, FA (2020) Gallic and ellagic acids are promising adjuvants to conventional amphotericin B for the treatment of cutaneous leishmaniasis. Antimicrobial Agents and Chemotherapy 64(12), e0080720. doi: 10.1128/AAC.00807-20.CrossRefGoogle ScholarPubMed
Araújo, SA, Lima, ADS, Rocha, CQD, Previtalli-Silva, H, Hardoim, DJ, Taniwaki, NN, Calabrese, KDS, Almeida-Souza, F, and Abreu-Silva, AL (2023) In vitro antioxidant and antitrypanosomal activities of extract and fractions of Terminalia catappa. Biology (Basel) 12(7), 895. doi: 10.3390/biology12070895.Google ScholarPubMed
Ateşşahín, A, Çeríbasi, AO, Yuce, A, Bulmus, O, and Çikim, G (2006) Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats. Basic & Clinical Pharmacology & Toxicology 100, 121126. doi: 10.1111/j.1742-7843.2006.00015.x.CrossRefGoogle Scholar
Bai, X, Hu, X, Liu, X, Tang, B, and Liu, M (2017) Current research of Trichinellosis in China. Frontiers in Microbiology 8, 1472. doi: 10.3389/fmicb.2017.01472.CrossRefGoogle ScholarPubMed
Banchroft, JD, Stevens, A, and Turner, DR (1996) Theory and practice of histological techniques. 4th edn. Livingstone, New York.Google Scholar
Basso, W, Marreros, N, Hofmann, L, Salvisberg, C, Lundström-Stadelmann, B, and Frey, CF (2022) Evaluation of the PrioCHECKTM Trichinella AAD kit to detect Trichinella spiralis, T. britovi, and T. pseudospiralis larvae in pork using the automated digestion method Trichomatic-35. Parasitology International 86, 102449. doi: 10.1016/j.parint.2021.102449.CrossRefGoogle Scholar
Basyoni, MMA, and El-Sabaa, AA (2013) Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. The Korean Journal of Parasitology 51(3), 297304. doi: 10.3347/kjp.2013.51.3.297.CrossRefGoogle ScholarPubMed
Beshbishy, AM, Batiha, GE, Yokoyama, N, and Igarashi, I (2019) Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasites and Vectors 12, 269. doi: 10.1186/s13071-019-3520-x.CrossRefGoogle ScholarPubMed
Bruschi, D (2014) Trichinellosis. In: Bruschi, F (ed), Helminth Infections and their impact on global public health. Springer, pp. 229273. doi:10.1007/978-3-7091-1782-8.CrossRefGoogle Scholar
Ceci, C, Lacal, PM, Tentori, L, De Martino, MG, Miano, R, and Graziani, G (2018) Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10(11), 1756. doi: 10.3390/nu10111756.CrossRefGoogle ScholarPubMed
Center, SA (2007) Interpretation of liver enzymes. Veterinary Clinics of North America: Small Animal Practice 37, 297333. doi: 10.1016/j.cvsm.2006.11.009CrossRefGoogle ScholarPubMed
Chiumiento, L, and Bruschi, F (2009) Enzymatic antioxidant systems in helminth parasites. Parasitology Research 105(3), 593603. doi: 10.1007/s00436-009-1483-0.CrossRefGoogle ScholarPubMed
de la Torre-Iglesias, PM, García-Rodriguez, JJ, Torrado, G, Torrado, S, Torrado-Santiago, S, and Bolás-Fernández, F (2014) Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Design, Development and Therapy 8, 14671479. doi: 10.2147/DDDT.S65561.Google ScholarPubMed
Denham, DA, (1965) Studies with methyridine and Trichinella spiralis. I. Effect upon the intestinal phase in mice. Experimental Parasitology 17(1), 1014. doi: 10.1016/0014-4894(65)90003-2.CrossRefGoogle ScholarPubMed
Ding, J, Bai, X, Wang, X, Shi, H, Cai, X, Luo, X, Liu, M, and Liu, X (2017) Immune cell responses and cytokine profile in intestines of mice infected with Trichinella spiralis. Frontiers Microbiology 8, 2069. doi: 10.3389/fmicb.2017.02069.CrossRefGoogle ScholarPubMed
Dunn, IJ, and Wright, KA (1985) Cell injury caused by Trichinella spiralis in the mucosal epithelium of B10A mice. The Journal of Parasitology 71(6), 757766.CrossRefGoogle ScholarPubMed
Elmehy, DA, Saad, MAH, Gamal, M, El Maghraby, GM, Arafa, MF, Soliman, NA, Elkaliny, HH, and Elgendy, DI (2021) Niosomal versus nano-crystalline ivermectin against different stages of Trichinella spiralis infection in mice. Parasitology Research 120, 26412658. doi: 10.1007/s00436-021-07172-1.CrossRefGoogle ScholarPubMed
El-Shitany, NA, El-Bastawissy, EA, and El-desoky, K (2014) Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. International Immunopharmacology 19(2), 290299. doi: 10.1016/j.intimp.2014.02.004.CrossRefGoogle ScholarPubMed
Esmat, M, Abdel-Aal, AA, Shalaby, MA, Fahmy, MA, Badawi, MAM, Elmallawany, MA, Magdy, M, Afife, AA, and Shafi, IRA (2021) Punica granatum and amygdalin extracts plus cobalamin combined with albendazole reduce larval burden and myositis in experimental trichinosis. Revista Brasileria de Parasitologia Veterinaria 30(4), e012021. doi: 10.1590/S1984-29612021084.CrossRefGoogle ScholarPubMed
Evtyugin, DD, Magina, S, and Evtuguin, DV (2020). Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules 25, 2745. doi: 10.3390/molecules25122745.CrossRefGoogle Scholar
Farid, AS, Fath, EM, Mido, S, Nonaka, N and Horii, Y. (2019): Hepatoprotective immune response during Trichinella spiralis infection in mice. The Journal of Veterinary Medical Science 81(2), 169176. doi: 10.1292/jvms.18-0540.CrossRefGoogle ScholarPubMed
Favarin, DC, Teixeira, MM, de Andrade, EL, Alves, C, Chica, JEL, Sorgi, CA, Faccioli, LH, and Rogerio, AP (2013) Anti-Inflammatory effects of ellagic acid on acute lung injury induced by acid in mice. Mediators of Inflammation, 164202. doi: 10.1155/2013/164202.Google Scholar
Garcia, A, Barrera, MG, Piccirilli, G, Vasconi, MD, Ricardo, JD, Leonardi, D, Hinrichsen, LI, and Lamas, MC (2013) Novel albendazole formulations given during the intestinal phase of Trichinella spiralis infection reduce effectively parasitic muscle burden in mice. Parasitology International 62(6), 568570. doi: 10.1016/j.parint.2013.08.009.CrossRefGoogle ScholarPubMed
Gottstein, B, Pozio, E, and Nöckler, K (2009) Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews 22(1), 127145. doi: 10.1128/CMR.00026-08.CrossRefGoogle ScholarPubMed
Issa, RM, El-Arousy, MH, and Abd EI-Aal, AA (1998) Albendazole: a study of its effect on experimental Trichinella spiralis infection in rats. Egyptian Journal of Medical Sciences 19, 281290.Google Scholar
Khalikov, SS (2021) Solid dispersions of anthelmintics and plant protection preparations. Solids 2(1), 6075. doi:10.3390/solids2010003CrossRefGoogle Scholar
Khan, WI (2008) Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse-Trichinella spiralis model. Parasitology 135(6), 671682. doi: 10.1017/S0031182008004381.CrossRefGoogle ScholarPubMed
Khan, MA, Khan, A, Azam, M, Allemailem, KS, Alrumaihi, F, Almatroudi, AA, Alhumaydhi, F, Azam, F, Khan, SH, Zofair, SFF, Ahmad, S, and Younus, H (2021) Liposomal ellagic acid alleviates cyclophosphamide-induced toxicity and eliminates the systemic Cryptococcus neoformans infection in leukopenic mice. Pharmaceutics 13, 882. doi: 10.3390/pharmaceutics13060882.CrossRefGoogle ScholarPubMed
Khedr, SI, Gomaa, MM, Mogahed, NMFH, Gamea, GA, Khodear, GAM, Sheta, E, Soliman, NA, El Saadany, AA, and Salama, AM (2024) Trichinella spiralis: a new parasitic target for curcumin nanoformulas in mice models. Parasitology International 98, 102810. doi: 10.1016/j.parint.2023.102810.CrossRefGoogle ScholarPubMed
Labrecque, L, Lamy, S, Ame´lie Chapus, A, Samira Mihoubi, S, Durocher, Y, Cass, B, Bojanowski, MW, Denis Gingras, D, and Be´liveau, R (2005) Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis 26(4), 821826. doi: 10.1093/carcin/bgi024.CrossRefGoogle ScholarPubMed
Marín, M, Giner, R, Ríos, JL, and Recio, MC (2013) Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. Journal of Ethnopharmacology, 150(3):925934. doi: 10.1016/j.jep.2013.09.030.CrossRefGoogle ScholarPubMed
Mayer-Scholl, A, Pozio, E, Gayda, J, Thaben, N, Bahn, P, and Nöckler, K (2017) Magnetic stirrer method for the detection of Trichinella larvae in muscle samples. Journal of Vis Exp. 121, 55354. doi: 10.3791/55354.Google Scholar
Mohanty, S, Gupta, AC, Maurya, AK, Shanker, K, Pal, A, and Bawankule, DU (2021) Ameliorative effects of dietary ellagic acid against severe malaria pathogenesis by reducing cytokine storms and oxidative stress. Frontiers in Pharmacology 12, 777400. doi: 10.3389/fphar.2021.777400.CrossRefGoogle ScholarPubMed
Montgomery, HAC and Dymock, JF (1961) The determination of nitrate in water. Analyst 86, 414416.Google Scholar
Munoz-Canoves, P, Scheele, C, Pedersen, BK, and Serrano, AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS Journal 280, 41314148. doi: 10.1111/febs.12338.CrossRefGoogle ScholarPubMed
Musa, D, Senocak, G, Borazan, G, Altas, M, Ozgonul, A, Sogut, O, and Güldür, ME (2011). Effects of nigella sativa and albendazole alone and in combination in Toxocara canis infected mice. JPMA-Journal of the Pakistan Medical Association 61(9), 866870. PMID: 22360025.Google ScholarPubMed
Nada, SM, Mohammad, SM, Moad, HSF, EL-Shafey, M.A., Al-Ghandour, AMF, and Ibrahim, N (2018) Therapeutic effect of Nigella Sativa and ivermectin versus albendazole on experimental trichinellosis in mice. Journal of the Egyptian Society of Parasitology 48 (1), 8592. doi: 10.21608/JESP.2018.77029CrossRefGoogle Scholar
Nasreldin, N, Swilam, S, Abd-Elrahman, SM, and Abd El-ghaffar, SK (2022) Evaluation of clinicopathological alterations in mice experimentally infected with Trichenella spiralis and the nematocidal effect of tannic acid and albendazole. New Valley Veterinary Journal 2(1), 1627. doi:10.21608/nvvj.2022.141188.1005.Google Scholar
Othman, AA, Abou Rayia, DM, Ashour, DS, Saied, EM, Zineldeen, DH, and El-Ebiary, AA (2016) Atorvastatin and metformin administration modulates experimental Trichinella spiralis infection. Parasitology International 65, 105–12. doi: 10.1016/j.parint.2015.11.001.CrossRefGoogle ScholarPubMed
Park, M, Kang, Y, Jo, J, Baek, K, Yu, H, Choi, Y, Cha, H, and Ock, MS (2018) Effect of muscle strength by Trichinella spiralis infection during chronic phase. International Journal of Medical Sciences 15(8), 802807. doi: 10.7150/ijms.23497.CrossRefGoogle ScholarPubMed
Ríos, JL, Giner, RM, Marín, M, and Recio, MC (2018) A pharmacological update of ellagic acid. Planta Medica 84(15), 10681093. doi: 10.1055/a-0633-9492.Google ScholarPubMed
Rosillo, MA, Sanchez-Hidalgo, M, C´ardeno, A, and Lastra, CA (2011) Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochemical Pharmacology 82(7), 737745. doi:10.1016/j.bcp.2011.06.043.CrossRefGoogle Scholar
Saad, AE, Ashour, DS, Abou Rayia, DM, and Bedeer, AE (2016) Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis. Parasitol Res 115(6), 23312339. doi: 10.1007/s00436-016-4982-9.CrossRefGoogle ScholarPubMed
Salama, MA, Mostafa, NE, Abd El-Aal, NF, Moawad, HS, Hammad, SK, Adel, R, and Mostafa, E (2022) Efficacy of Zingiber officinale and Cinnamomum zeylanicum extracts against experimental Journal of Parasitic Disease 46(1), 2436. doi: 10.1007/s12639-021-01412-y.CrossRefGoogle ScholarPubMed
Schmittgen, TD, and Livak, KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3(6), 11011108. doi: 10.1038/nprot.2008.73.CrossRefGoogle Scholar
Shakeri, A, Zirak, MR, and Sahebkar, A (2018). Ellagic acid: a logical lead for drug development? Current Pharmaceutical Design 24, 106122. doi:10.2174/1381612823666171115094557CrossRefGoogle ScholarPubMed
Soh, PN, Witkowski, B, Olagnier, D, Nicolau, ML, Garcia-Alvarez, MC, Berry, A, and Benoit-Vical, F (2009) In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrobial Agents and Chemotherapy 53, 11001106. doi: 10.1128/AAC.01175-08.CrossRefGoogle ScholarPubMed
Soliman, N, Shafik, N, Shoheib, Z, and Ashour, D (2013) Expression of some pro-inflammatory cytokines and inflammatory mediators in experimental model of Trichinella Spiralis. Bulletin of Egyptian Society for Physiological Sciences 33(2), 3760. doi: 10.21608/BESPS.2013.35220.CrossRefGoogle Scholar
Song, z, Deng, C, Chen, Q, Zhao, S, Li, P, Wu, T, Hou, Y, and Yi, D (2024) Protective effects and mechanisms of ellagic acid on intestinal injury in piglets infected with porcine epidemic diarrhea virus. Frontiers in Immunology 15, 1323866. doi: 10.3389/fimmu.2024.1323866.CrossRefGoogle Scholar
Umesalma, S, and Sudhandiran, G (2010) Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF- ƙβ, iNOS, COX-2, TNF-a, and IL-6 in 1,2-Dimethylhydrazine-induced rat colon carcinogenesis. Basic & Clinical Pharmacology & Toxicology 107, 650655. doi: 10.1111/j.1742-7843.2010.00565.x.CrossRefGoogle Scholar
Vattem, DA, Ghaedian, R, and Shetty, K (2005) Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pacific Journal of Clinical Nutrition 14, 120130. PMID: 15927928.Google ScholarPubMed
Widyawati, R, Yuniarti, WM, and Lukiswanto, BS (2023). Ellagic acid from whole pomegranate fruit reduces liver injury in a rat model of hepatic cholestasis. Open Veterinary Journal 13(4), 466472. doi: 10.5455/OVJ.2023.v13.i4.8.CrossRefGoogle Scholar
World Health Organization (WHO) (2021) Foodborne parasitic infections: Trichinellosis (trichinosis). Available at https://www.who.int/publications/i/item/WHO-UCN-NTD-VVE-2021.7 (accessed on 16 September 2024).Google Scholar
Xu, F, Hou, B, Zhu, X, Liu, Y, Shi, X, Li, S, Li, Z, Cai, W, Zhou, Y, and Qui, L (2019) Vaccaria n-butanol extract lower the production of proinflammatory cytokines and the infection risk of T. spiralis in vivo. Acta Parasitologica 64(3), 520527. doi: 10.2478/s11686-019-00064-6.CrossRefGoogle ScholarPubMed
Xu, J, Bai, X, Wang, LB, Shi, HN, Van Der Giessen, JWB, Boireau, P, Liu, MY, and Liu, XL (2017) Immune responses in mice vaccinated with a DNA vaccine expressing serine protease-like protein from the new-born larval stage of Trichinella spiralis. Parasitology 144, 712719. doi: 10.1017/S0031182016002493.CrossRefGoogle Scholar
Zhou, X, Dong, L, Yang, B, He, Z, Chen, Y, Deng, T, and Lan, C (2015) Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways. Amino Acids 47(12), 26352645. doi: 10.1007/s00726-015-2056-4.CrossRefGoogle ScholarPubMed