No CrossRef data available.
Article contents
Meta-learning: Bayesian or quantum?
Published online by Cambridge University Press: 23 September 2024
Abstract
Abundant experimental evidence illustrates violations of Bayesian models across various cognitive processes. Quantum cognition capitalizes on the limitations of Bayesian models, providing a compelling alternative. We suggest that a generalized quantum approach in meta-learning is simultaneously more robust and flexible, as it retains all the advantages of the Bayesian framework while avoiding its limitations.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: A new theoretical approach to psychology. Trends in Cognitive Sciences, 19, 383–393.CrossRefGoogle ScholarPubMed
Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge University Press.CrossRefGoogle Scholar
Busemeyer, J. R., & Wang, Z. (2015). What is quantum cognition, and how is it applied to psychology?. Current Directions in Psychological Science, 24(3), 163–169.CrossRefGoogle Scholar
Busemeyer, J. R., Wang, Z., & Lambert-Mogiliansky, A. (2009). Empirical comparison of Markov and quantum models of decision making. Journal of Mathematical Psychology, 53, 423–433.CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.CrossRefGoogle ScholarPubMed
Mastrogiorgio, A. (2022). A quantum predictive brain: Complementarity between Top-down predictions and bottom-up evidence. Frontiers in Psychology, 13, 869894.CrossRefGoogle ScholarPubMed
Pothos, E.M., & Busemeyer, J.R. (2022). Quantum cognition. Annual Review of Psychology, 73, 749–778.CrossRefGoogle ScholarPubMed
Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z.,… Botvinick, M. (2018). Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 21(6), 860–868.CrossRefGoogle ScholarPubMed
Target article
Meta-learned models of cognition
Related commentaries (22)
Bayes beyond the predictive distribution
Challenges of meta-learning and rational analysis in large worlds
Combining meta-learned models with process models of cognition
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes
Is human compositionality meta-learned?
Learning and memory are inextricable
Linking meta-learning to meta-structure
Meta-learned models as tools to test theories of cognitive development
Meta-learned models beyond and beneath the cognitive
Meta-learning and the evolution of cognition
Meta-learning as a bridge between neural networks and symbolic Bayesian models
Meta-learning goes hand-in-hand with metacognition
Meta-learning in active inference
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Meta-learning: Bayesian or quantum?
Probabilistic programming versus meta-learning as models of cognition
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy
Quo vadis, planning?
The added value of affective processes for models of human cognition and learning
The hard problem of meta-learning is what-to-learn
The meta-learning toolkit needs stronger constraints
The reinforcement metalearner as a biologically plausible meta-learning framework
Author response
Meta-learning: Data, architecture, and both