Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:12:28.124Z Has data issue: false hasContentIssue false

OHNO–ZAGIER TYPE RELATIONS FOR MULTIPLE t-VALUES

Published online by Cambridge University Press:  11 November 2022

ZHONGHUA LI*
Affiliation:
School of Mathematical Sciences, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
YUTONG SONG
Affiliation:
School of Mathematical Sciences, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China e-mail: [email protected]
*
Rights & Permissions [Opens in a new window]

Abstract

We study Ohno–Zagier type relations for multiple t-values and multiple t-star values. We represent the generating function of sums of multiple t-(star) values with fixed weight, depth and height in terms of the generalised hypergeometric function $\,_3F_2$ . As applications, we get a formula for the generating function of sums of multiple t-(star) values of maximal height and a weighted sum formula for sums of multiple t-(star) values with fixed weight and depth.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

A finite sequence $\mathbf {k}=(k_1,\ldots ,k_n)$ of positive integers is called an index. The weight, depth and height of the index $\mathbf {k}$ are defined respectively by $k_1{\kern-1.5pt}+\cdots +k_n$ , n and the cardinality $|\{\,j\mid 1\leq j\leq n, k_j\geq 2\}|$ . If $k_1>1$ , the index $\mathbf {k}$ is called admissible. For an admissible index $\mathbf {k}=(k_1,\ldots ,k_n)$ , the multiple zeta value $\zeta (\mathbf {k})$ and the multiple zeta-star value $\zeta ^{\star }(\mathbf {k})$ are defined respectively by

$$ \begin{align*} \zeta(\mathbf{k})=\zeta(k_1,\ldots,k_n) & =\sum\limits_{m_1>\cdots>m_n>0}\frac{1}{m_1^{k_1}\cdots m_n^{k_n}},\\ \zeta^{\star}(\mathbf{k})=\zeta^{\star}(k_1,\ldots,k_n) & =\sum\limits_{m_1\geq\cdots\geq m_n>0}\frac{1}{m_1^{k_1}\cdots m_n^{k_n}}. \end{align*} $$

A systematic study of multiple zeta values was carried out by Hoffman [Reference Hoffman2] and Zagier [Reference Zagier, Joseph, Mignot, Murat, Prum and Rentschler10]. More results of multiple zeta values can be found in the book [Reference Zhao11] of Zhao.

We focus on Ohno–Zagier type relations. For nonnegative integers $k,n,s$ , denote by $I_0(k,n,s)$ the set of admissible indices of weight k, depth n and height s. It is easy to see that $I_0(k,n,s)$ is nonempty if and only if $k\geq n+s$ and $n\geq s\geq 1$ . Using the Gaussian hypergeometric function, Ohno and Zagier proved in [Reference Ohno and Zagier7] that

$$ \begin{align*} \sum\limits_{k\geq n+s,n\geq s\geq 1} & \bigg(\sum\limits_{\mathbf{k}\in I_0(k,n,s)}\zeta(\mathbf{k})\bigg)\,u^{k-n-s}v^{n-s}w^{s-1}\\ &=\frac{1}{uv-w}\bigg\{1-\exp\bigg(\sum\limits_{n=2}^\infty\frac{\zeta(n)}{n}(u^n+v^n-\alpha^n-\beta^n)\bigg)\bigg\}, \end{align*} $$

where $\alpha $ and $\beta $ are determined by $\alpha +\beta =u+v$ and $\alpha \beta =w$ . Similar studies were carried out on various generalisations of multiple zeta values. For example, Aoki et al. [Reference Aoki, Kombu and Ohno1] gave a similar formula for the sums of multiple zeta-star values involving the generalised hypergeometric function ${}_3F_2$ :

$$ \begin{align*} \sum\limits_{k\geq n+s,n\geq s\geq 1} & \bigg(\sum\limits_{\mathbf{k}\in I_0(k,n,s)}\zeta^{\star}(\mathbf{k})\bigg)\,u^{k-n-s}v^{n-s}w^{2s-2}\\ &=\frac{1}{(1-v)(1-\beta)}\,_3F_2\bigg({1-\beta,1-\beta+u,1\atop 2-v,2-\beta};1\bigg) \end{align*} $$

with $\alpha $ and $\beta $ determined by $\alpha +\beta =u+v$ and $\alpha \beta =uv-w^2$ . Here, for a positive integer m and complex numbers $a_1,\ldots ,a_{m+1},b_1,\ldots ,b_m$ with $b_1,\ldots ,b_m\neq 0,-1,-2,\ldots ,$ the generalised hypergeometric function ${}_{m+1}F_m$ is defined by

$$ \begin{align*} \,_{m+1}F_m\bigg({a_1,\ldots,a_{m+1}\atop b_1,\ldots,b_m};z\bigg)=&\sum\limits_{n=0}^\infty\frac{(a_1)_n\cdots(a_{m+1})_n}{n!(b_1)_n\cdots(b_m)_n}z^n, \end{align*} $$

with the Pochhammer symbol $(a)_n$ defined by

$$ \begin{align*}(a)_n=\frac{\Gamma(a+n)}{\Gamma(a)}=\begin{cases} 1 & \text{if } n=0,\\ a(a+1)\cdots (a+n-1) & \text{if } n>0. \end{cases}\end{align*} $$

It is known that this formal power series converges absolutely for $|z|<1$ , and it also converges absolutely for $|z|=1$ if $\Re (\sum b_i-\sum a_i)>0$ . If $m=1$ , we get the Gaussian hypergeometric function.

In [Reference Takeyama9], Takeyama studied the Ohno–Zagier type relation for a level two variant of multiple zeta values, called multiple T-values, introduced by Kaneko and Tsumura [Reference Kaneko, Tsumura, Mishou, Nakamura, Suzuki and Umegaki6]. As a consequence, a weighted sum formula of multiple T-values with fixed weight and depth was given in [Reference Takeyama9]. We consider another level two variant of multiple zeta values, called multiple t-values, introduced by Hoffman in [Reference Hoffman3].

For an admissible index $\mathbf {k}=(k_1,\ldots ,k_n)$ , the multiple t-value $t(\mathbf {k})$ and the multiple t-star value $t^{\star }(\mathbf {k})$ are defined respectively by

$$ \begin{align*} t(\mathbf{k})=t(k_1,\ldots,k_n) & =\sum\limits_{\substack{m_1>\cdots>m_n>0\\ m_i\,\text{odd}}}\frac{1}{m_1^{k_1}\cdots m_n^{k_n}},\\ t^{\star}(\mathbf{k})=t^{\star}(k_1,\ldots,k_n) & =\sum\limits_{\substack{m_1\geq \cdots\geq m_n>0\\ m_i\,\text{odd}}}\frac{1}{m_1^{k_1}\cdots m_n^{k_n}}. \end{align*} $$

It is easy to obtain the following iterated integral representations:

$$ \begin{align*} t(\mathbf{k}) & =\int_0^1\bigg(\frac{dt}{t}\bigg)^{k_1-1}\frac{t\,dt}{1-t^2}\cdots \bigg(\frac{dt}{t}\bigg)^{k_{n-1}-1}\frac{t\,dt}{1-t^2}\bigg(\frac{dt}{t}\bigg)^{k_n-1}\frac{dt}{1-t^2},\\ t^{\star}(\mathbf{k}) & =\int_0^1\bigg(\frac{dt}{t}\bigg)^{k_1-1}\frac{dt}{t(1-t^2)}\cdots\bigg(\frac{dt}{t}\bigg)^{k_{n-1}-1}\frac{dt}{t(1-t^2)}\bigg(\frac{dt}{t}\bigg)^{k_n-1}\frac{dt}{1-t^2}, \end{align*} $$

where $({dt}/{t})^{k_i-1}={{dt}/{t}\cdots {dt}/{t}}\ (k_i-1 \mbox { factors})$ , and for one-forms $\omega _i(t)=f_i(t)dt$ , $i=1,2,\ldots ,k$ , we define the iterated integral

$$ \begin{align*}\int_0^z\omega_1(t)\cdots\omega_k(t)=\int_{z>t_1>\cdots>t_k>0}f_1(t_1)\cdots f_k(t_k)\,dt_1\cdots dt_k.\end{align*} $$

We want to study the sum of multiple t-(star) values with fixed weight, depth and height. For nonnegative integers $k,n,s$ , define

$$ \begin{align*}G_0(k,n,s)=\sum\limits_{\mathbf{k}\in I_0(k,n,s)}t(\mathbf{k}),\quad G_0^{\star}(k,n,s)=\sum\limits_{\mathbf{k}\in I_0(k,n,s)}t^{\star}(\mathbf{k}).\end{align*} $$

Then we obtain Ohno–Zagier type relations which represent the generating functions of $G_0(k,n,s)$ and $G_0^{\star }(k,n,s)$ by the generalised hypergeometric function ${}_3F_2$ .

Theorem 1.1. For formal variables $u,v,w$ ,

$$ \begin{align*}\sum\limits_{k\geq n+s,n\geq s\geq 1}G_0(k,n,s)u^{k-n-s}v^{n-s}w^{s-1}=\frac{1}{1-u}\,_3F_2\bigg({\alpha,\beta,1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg),\end{align*} $$

where $\alpha $ and $\beta $ are determined by $\alpha +\beta {\kern-1pt}={\kern-1pt}1-\frac{1}{2}u+\frac{1}{2}v$ and $\alpha \beta {\kern-1pt}={\kern-1pt}\tfrac 14(1{\kern-1pt}-{\kern-1pt}u+v- uv+w)$ .

Theorem 1.2. For formal variables $u,v,w$ ,

$$ \begin{align*} \sum\limits_{k\geq n+s,n\geq s\geq 1}G_0^{\star}(k,n,s)u^{k-n-s}v^{n-s}w^{s-1}=\frac{1}{1-u-v+uv-w}\,_3F_2 \bigg({\frac{1-u}{2},\frac{1}{2},1\atop \alpha^{\star},\beta^{\star}};1\bigg), \end{align*} $$

where $\alpha ^{\star }$ and $\beta ^{\star }$ are determined by $\alpha ^{\star }+\beta ^{\star }=3-\frac{1}{2}u-\frac{1}{2}v$ and $\alpha \beta =\tfrac 14(9-3u-3v+uv-w)$ .

From these theorems and using summation formulae for $\,_3F_2$ , we obtain several corollaries in Section 2. For example, we give a formula for the generating function of sums of multiple t-(star) values of maximal height and a weighted sum formula of sums of multiple t-(star) values with fixed weight and depth. Finally, we prove Theorems 1.1 and 1.2 in Section 3.

2 Applications

2.1 Sums of height one

To save space, we denote a sequence of k repeated n times by $\{k\}^n$ .

Setting $w=0$ in Theorem 1.1,

$$ \begin{align*}\alpha,\beta=\frac{1-u}{2},\frac{1+v}{2}.\end{align*} $$

Hence, we get the following result, which gives the generating function of height one multiple t-values.

Corollary 2.1 [Reference Hoffman3, Theorem 5.1]

We have

$$ \begin{align*}\sum\limits_{k\geq n+1,n\geq 1}t(k-n+1,\{1\}^{n-1})u^{k-n-1}v^{n-1}=\frac{1}{1-u}\,_3F_2\bigg({\frac{1-u}{2},\frac{1+v}{2},1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg).\end{align*} $$

Similarly, setting $w=0$ in Theorem 1.2,

$$ \begin{align*}\alpha^{\star},\beta^{\star}=\frac{3-u}{2},\frac{3-v}{2}.\end{align*} $$

Therefore, we obtain the generating function of height one multiple t-star values.

Corollary 2.2. We have

$$ \begin{align*}\sum\limits_{k\geq n+1,n\geq 1}t^{\star}(k-n+1,\{1\}^{n-1})u^{k-n-1}v^{n-1}=\frac{1}{(1-u)(1-v)}\,_3F_2\bigg({\frac{1-u}{2},\frac{1}{2},1\atop \frac{3-u}{2},\frac{3-v}{2}};1\bigg).\end{align*} $$

Note that using [Reference Hoffman3, Lemma 5.2], for any integer $m\geq 2$ ,

$$ \begin{align*} \sum\limits_{n=1}^\infty t(m,\{1\}^{n-1})v^{n-1}=\,_{m+1}F_{m}\bigg({\frac{1+v}{2},1,\{\frac{1}{2}\}^{m-1}\atop \{\frac{3}{2}\}^m};1\bigg),\\ \sum\limits_{n=1}^\infty t^{\star}(m,\{1\}^{n-1})v^{n-1}=\frac{1}{1-v}\,_{m+1}F_{m}\bigg({1,\{\frac{1}{2}\}^{m}\atop \frac{3-v}{2},\{\frac{3}{2}\}^{m-1}};1\bigg). \end{align*} $$

2.2 Sums of maximal height

Setting $v=0$ in Theorem 1.1, we get the generating function of sums of multiple t-values of maximal height. By the symmetric sum formula [Reference Hoffman3, Theorem 3.2], the sum of multiple t-values with fixed weight, depth and maximal height can be represented by t-values. Here we give a closed formula for the generating function of the sums of maximal height.

Corollary 2.3. For formal variables $u,w$ ,

(2.1) $$ \begin{align} 1+\sum\limits_{k\geq 2n,n\geq 1}G_0(k,n,n)u^{k-2n}w^n=\exp\bigg\{\sum\limits_{n=2}^\infty\frac{t(n)}{n}(u^n-x^n-y^n)\bigg\}, \end{align} $$

where x and y are determined by $x+y=u$ and $xy=w$ .

Proof. Setting $v=0$ in Theorem 1.1, we get $\alpha +\beta =1-\frac{1}{2}u$ and $\alpha \beta =\tfrac 14(1-u+w)$ . Let $x=1-2\alpha $ and $y=1-2\beta $ , then $x+y=u$ and $xy=w$ . Using the summation formula [Reference Prudnikov, Brychkov and Marichev8, 7.4.4.28],

(2.2) $$ \begin{align} \,_3F_2\bigg({a,b,1\atop c,2+a+b-c};1\bigg) =\frac{1+a+b-c}{(1+a-c)(1+b-c)}\bigg(1-c+\frac{\Gamma(c)\Gamma(1+a+b-c)}{\Gamma(a)\Gamma(b)}\bigg). \end{align} $$

With $a=\alpha $ , $b=\beta $ and $c=\tfrac 32$ ,

$$ \begin{align*} \frac{1}{1-u}\,_3F_2\bigg({\alpha,\beta,1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg) &=\frac{1}{1-u}\frac{\frac{1-u}{2}}{(\alpha-\frac{1}{2})(\,\beta-\frac{1}{2})}\bigg(-\frac{1}{2}+\frac{\Gamma(\frac{3}{2})\Gamma(\frac{1-u}{2})}{\Gamma(\alpha)\Gamma(\,\beta)}\bigg)\\ &=-\frac{1}{w}+\frac{\sqrt{\pi}}{w}\frac{\Gamma(\frac{1-u}{2})}{\Gamma(\frac{1-x}{2})\Gamma(\frac{1-y}{2})}. \end{align*} $$

Using the duplication formula

$$ \begin{align*}\Gamma\bigg(\frac{1}{2}-\frac{z}{2}\bigg)=\frac{\sqrt{\pi}2^{z}\Gamma(1-z)}{\Gamma(1-\frac{z}{2})}\end{align*} $$

and the expansion

(2.3) $$ \begin{align} \Gamma(1-z)=\exp\bigg(\gamma z+\sum\limits_{n=2}^\infty\frac{\zeta(n)}{n}z^n\bigg), \end{align} $$

where $\gamma $ is Euler’s constant,

$$ \begin{align*}\Gamma\bigg(\frac{1-z}{2}\bigg)=\sqrt{\pi}2^z\exp\bigg\{\frac{\gamma z}{2}+\sum\limits_{n=2}^\infty \frac{\zeta(n)}{n}(1-2^{-n})z^n\bigg\}.\end{align*} $$

Since $t(n)=(1-2^{-n})\zeta (n)$ , we find that (see also [Reference Hoffman3, Theorem 3.3])

(2.4) $$ \begin{align} \Gamma\bigg(\frac{1-z}{2}\bigg)=\sqrt{\pi}2^z\exp\bigg\{\frac{\gamma z}{2}+\sum\limits_{n=2}^\infty \frac{t(n)}{n}z^n\bigg\}. \end{align} $$

Now it is easy to finish the proof.

Similarly, we have a formula for the generating function of the sums of multiple t-star values of maximal height.

Corollary 2.4. For formal variables $u,w$ ,

(2.5) $$ \begin{align} 1+\sum\limits_{k\geq 2n,n\geq 1}G_0^{\star}(k,n,n)u^{k-2n}w^n=\exp\bigg\{\sum\limits_{n=2}^\infty\frac{t(n)}{n}((x^\star)^n+(y^{\star})^n-u^n)\bigg\}, \end{align} $$

where $x^{\star }$ and $y^{\star }$ are determined by $x^{\star }+y^{\star }=u$ and $x^{\star }y^{\star }=-w$ .

Proof. Setting $v=0$ in Theorem 1.2, we obtain $\alpha ^{\star }+\beta ^{\star }=3-\frac{1}{2}u$ and $\alpha ^{\star }\beta ^{\star }=\tfrac 14 (9-3u-w)$ . Let $x^{\star }=3-2\alpha ^{\star }$ and $y^{\star }=3-2\beta ^{\star }$ , so that $x^{\star }+y^{\star }=u$ and $x^{\star }y^{\star }=-w$ . Using the summation formula (2.2) with $a=\frac{1}{2}(1-u)$ , $b=\tfrac 12$ and $c=\alpha ^{\star }$ ,

$$ \begin{align*} \frac{1}{1-u-w}\,_3F_2\bigg({\frac{1-u}{2},\frac{1}{2},1\atop \alpha^{\star},\beta^{\star}};1\bigg) &=\frac{1}{1-u-w}\frac{-(\,\beta^{\star}-1)}{(\alpha^{\star}-\frac{3}{2})(\,\beta^{\star}-\frac{3}{2})}\bigg(1-\alpha^{\star}+\frac{\Gamma(\alpha^{\star})\Gamma(\,\beta^{\star}-1)}{\Gamma(\frac{1-u}{2})\Gamma(\frac{1}{2})}\bigg)\\ &=-\frac{1}{w}+\frac{1}{w\sqrt{\pi}}\frac{\Gamma(\frac{1-x^{\star}}{2})\Gamma(\frac{1-y^{\star}}{2})}{\Gamma(\frac{1-u}{2})}. \end{align*} $$

Now the result follows from (2.4).

From (2.1) and (2.5),

$$ \begin{align*}\bigg(1+\sum\limits_{k\geq 2n,n\geq 1}G_0(k,n,n)u^{k-2n}w^n\bigg)\bigg(1+\sum\limits_{k\geq 2n,n\geq 1}(-1)^nG_0^{\star}(k,n,n)u^{k-2n}w^n\bigg)=1.\end{align*} $$

Also, setting $u=0$ in (2.1) and (2.5),

$$ \begin{align*} 1+\sum\limits_{n=1}^{\infty}t(\{2\}^n)w^n & =\exp\bigg\{\sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{n}t(2n)w^n\bigg\},\\ 1+\sum\limits_{n=1}^{\infty}t^{\star}(\{2\}^n)w^n & =\exp\bigg\{\sum\limits_{n=1}^\infty\frac{1}{n}t(2n)w^n\bigg\}. \end{align*} $$

These formulae can also be deduced from the identities [Reference Ihara, Kajikawa, Ohno and Okuda4, Reference Ihara, Kaneko and Zagier5]

$$ \begin{align*} \frac{1}{1-z_kw}=\exp_{\ast}\bigg(\sum\limits_{n=1}^\infty \frac{(-1)^{n-1}}{n}z_{nk}w^n\bigg), \quad \bigg(\frac{1}{1+z_kt}\bigg)\ast S\bigg(\frac{1}{1-z_kt}\bigg)=1, \end{align*} $$

in the harmonic shuffle algebra.

2.3 A weighted sum formula

Let $I_0(k,n)$ be the set of admissible indices of weight k and depth n, and define

$$ \begin{align*}G_0(k,n)=\sum\limits_{\mathbf{k}\in I_0(k,n)}t(\mathbf{k}),\quad G_0^{\star}(k,n)=\sum\limits_{\mathbf{k}\in I_0(k,n)}t^{\star}(\mathbf{k}),\end{align*} $$

which are the sums of multiple t-values and multiple t-star values with fixed weight k and depth n, respectively. By setting $w=uv$ and then $v=2u$ or $v=-2u$ in Theorems 1.1 and 1.2, we obtain the following results.

Proposition 2.5. For a formal variable u,

(2.6) $$ \begin{align} \sum\limits_{k=2}^\infty\bigg(\sum\limits_{n=1}^{k-1}2^{n-1}G_0(k,n)\bigg)u^{k-2} & =\sum\limits_{k=2}^\infty\bigg(\sum\limits_{n=1}^{k-1}(-1)^{k-n-1}2^{n-1}G_0^{\star}(k,n)\bigg)u^{k-2}\nonumber\\ & = 2^{2u}t(2)\exp\bigg(\sum\limits_{n=2}^\infty\frac{4(2^{n-1}-1)}{n(2^n-1)}t(n)u^n\bigg). \end{align} $$

Proof. If $w=uv$ in Theorem 1.1,

$$ \begin{align*}\alpha,\beta=\frac{1-u+v}{2},\frac{1}{2}.\end{align*} $$

Hence, we get the expression for the generating function of sums of multiple t-values with fixed weight and depth:

$$ \begin{align*}\sum\limits_{k>n\geq 1}G_0(k,n)u^{k-n-1}v^{n-1}=\frac{1}{1-u}\,_3F_2\bigg({\frac{1-u+v}{2},\frac{1}{2},1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg).\end{align*} $$

Setting $v=2u$ ,

$$ \begin{align*}\sum\limits_{k>n\geq 1}2^{n-1}G_0(k,n)u^{k-2}=\frac{1}{1-u}\,_3F_2\bigg({\frac{1+u}{2},\frac{1}{2},1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg).\end{align*} $$

Using Dixon’s summation formula [Reference Prudnikov, Brychkov and Marichev8, 7.4.4.21]: for $\Re (a-2b-2c)>-2$ ,

$$ \begin{align*} \,_3F_2\bigg({a,b,c\atop 1+a-b,1+a-c};1\bigg) =\frac{\sqrt{\pi}}{2^a}\frac{\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+\frac{a}{2}-b-c)}{\Gamma(\frac{1+a}{2})\Gamma(1+\frac{a}{2}-b)\Gamma(1+\frac{a}{2}-c)\Gamma(1+a-b-c)}, \end{align*} $$

with $a=1$ , $b=\tfrac 12$ and $c=\frac{1}{2}(1+u)$ , we get

$$ \begin{align*} \frac{1}{1-u}\,_3F_2\bigg({\frac{1+u}{2},\frac{1}{2},1\atop \frac{3-u}{2},\frac{3}{2}};1\bigg) =\frac{1}{1-u} \frac{\sqrt{\pi}}{2}\frac{\Gamma(\frac{3}{2})\Gamma(\frac{3-u}{2})\Gamma(\frac{1-u}{2})}{\Gamma(1-\frac{u}{2})\Gamma(1-\frac{u}{2})} =\frac{\pi}{8}\frac{\Gamma(\frac{1-u}{2})^2}{\Gamma(1-\frac{u}{2})^2}. \end{align*} $$

Then using (2.3), (2.4), the relation $\zeta (n)=(1-2^{-n})^{-1}t(n)$ and $t(2)={\pi ^2}/{8}$ , we get

$$ \begin{align*}\sum\limits_{k=2}^\infty\bigg(\sum\limits_{n=1}^{k-1}2^{n-1}G_0(k,n)\bigg)u^{k-2}=2^{2u}t(2)\exp\bigg(\sum\limits_{n=2}^\infty\frac{4(2^{n-1}-1)}{n(2^n-1)}t(n)u^n\bigg).\end{align*} $$

Similarly, setting $w=uv$ in Theorem 1.2,

$$ \begin{align*}\alpha^{\star},\beta^{\star}=\frac{3-u-v}{2},\frac{3}{2}.\end{align*} $$

Hence,

$$ \begin{align*}\sum\limits_{k>n\geq 1}G_0^{\star}(k,n)u^{k-n-1}v^{n-1}=\frac{1}{1-u-v}\,_3F_2\bigg({\frac{1-u}{2},\frac{1}{2},1\atop \frac{3-u-v}{2},\frac{3}{2}};1\bigg).\end{align*} $$

Let $v=-2u$ . Then

$$ \begin{align*}\sum\limits_{k>n\geq 1}(-2)^{n-1}G_0^{\star}(k,n)u^{k-2}=\frac{1}{1+u}\,_3F_2\bigg({\frac{1-u}{2},\frac{1}{2},1\atop \frac{3+u}{2},\frac{3}{2}};1\bigg).\end{align*} $$

Now it is easy to finish the proof.

Expanding the right-hand side of (2.6) gives the following weighted sum formula.

Corollary 2.6. For any integer $k\geq 2$ ,

$$ \begin{align*} \sum\limits_{n=1}^{k-1} & 2^{n-1}G_0(k,n) =\sum\limits_{n=1}^{k-1}(-1)^{k-n-1}2^{n-1}G_0^{\star}(k,n)\\ & =\sum\limits_{\substack{n+n_1+\cdots+n_m=k-2\\ n,m\geq 0,n_1,\ldots,n_m\geq 2}}\frac{2^{n+2m}(2^{n_1-1}-1)\cdots(2^{n_m-1}-1)}{n!m!n_1\cdots n_m(2^{n_1}-1)\cdots(2^{n_m}-1)}t(2)t(n_1)\cdots t(n_m)\log^n 2. \end{align*} $$

3 Proofs of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 are similar to that of the Ohno–Zagier relation for multiple zeta values in [Reference Ohno and Zagier7].

As in [Reference Hoffman3], for an index $\mathbf {k}=(k_1,\ldots ,k_n)$ , define

$$ \begin{align*} &\mathcal{L}_{\mathbf{k}}(z)=\mathcal{L}_{k_1,\ldots,k_n}(z)=\sum\limits_{\substack{m_1>\cdots>m_n>0\\ m_i\,\text{odd}}}\frac{z^{m_1}}{m_1^{k_1}\cdots m_n^{k_n}},\\ &\mathcal{L}_{\mathbf{k}}^{\star}(z)=\mathcal{L}_{k_1,\ldots,k_n}^{\star}(z)=\sum\limits_{\substack{m_1\geq\cdots\geq m_n>0\\ m_i\,\text{odd}}}\frac{z^{m_1}}{m_1^{k_1}\cdots m_n^{k_n}}. \end{align*} $$

Then $\mathcal {L}_{\mathbf {k}}(z)$ and $\mathcal {L}_{\mathbf {k}}^{\star }(z)$ converge absolutely for $|z|<1$ . If $k_1>1$ , $\mathcal {L}_{\mathbf {k}}(1)=t(\mathbf {k})$ and $\mathcal {L}_{\mathbf {k}}^{\star }(1)=t^{\star }(\mathbf {k})$ . From [Reference Hoffman3, Lemma 5.1],

(3.1) $$ \begin{align} \frac{d}{dz}\mathcal{L}_{k_1,\ldots,k_n}(z)=\begin{cases} \displaystyle\frac{1}{z}\mathcal{L}_{k_1-1,k_2,\ldots,k_n}(z) & \text{if } k_1>1,\\ \displaystyle\frac{z}{1-z^2}\mathcal{L}_{k_2,\ldots,k_n}(z) & \text{if } n\geq 2, k_1=1,\\ \displaystyle\frac{1}{1-z^2} & \text{if } n=k_1=1. \end{cases} \end{align} $$

Similarly,

(3.2) $$ \begin{align} \frac{d}{dz}\mathcal{L}_{k_1,\ldots,k_n}^{\star}(z)=\begin{cases} \displaystyle\frac{1}{z}\mathcal{L}_{k_1-1,k_2,\ldots,k_n}^{\star}(z) & \text{if } k_1>1,\\ \displaystyle\frac{1}{z(1-z^2)}\mathcal{L}_{k_2,\ldots,k_n}^{\star}(z) & \text{if } n\geq 2, k_1=1,\\ \displaystyle\frac{1}{1-z^2} & \text{if } n=k_1=1. \end{cases} \end{align} $$

One can also obtain (3.1) and (3.2) from the following iterated integral representations:

$$ \begin{align*} &\mathcal{L}_{k_1,\ldots,k_n}(z)=\int_0^z\bigg(\frac{dt}{t}\bigg)^{k_1-1}\frac{t\,dt}{1-t^2}\cdots\bigg(\frac{dt}{t}\bigg)^{k_{n-1}-1}\frac{t\,dt}{1-t^2}\bigg(\frac{dt}{t}\bigg)^{k_n-1}\frac{dt}{1-t^2},\\ &\mathcal{L}_{k_1,\ldots,k_n}^{\star}(z)=\int_0^z\bigg(\frac{dt}{t}\bigg)^{k_1-1}\frac{dt}{t(1-t^2)}\cdots\bigg(\frac{dt}{t}\bigg)^{k_{n-1}-1}\frac{dt}{t(1-t^2)}\bigg(\frac{dt}{t}\bigg)^{k_n-1}\frac{dt}{1-t^2}. \end{align*} $$

3.1 Proof of Theorem 1.1

For nonnegative integers $k,n,s$ , denote by $I(k,n,s)$ the set of indices of weight k, depth n and height s, and define the sums

$$ \begin{align*}G(k,n,s;z)=\sum\limits_{\mathbf{k}\in I(k,n,s)}\mathcal{L}_{\mathbf{k}}(z),\quad G_0(k,n,s;z)=\sum\limits_{\mathbf{k}\in I_0(k,n,s)}\mathcal{L}_{\mathbf{k}}(z).\end{align*} $$

If the index set is empty, the sum is treated as zero. We also set $G(0,0,0;z)=1$ . Note that if $k\geq n+s$ and $n\geq s\geq 1$ ,

$$ \begin{align*}G_0(k,n,s;1)=G_0(k,n,s).\end{align*} $$

For integers $k,n,s$ , using (3.1), we have the following identities:

  1. (1) if $k\geq n+s$ and $n\geq s\geq 1$ ,

    (3.3) $$ \begin{align} \frac{d}{dz} & G_0(k,n,s;z) \nonumber\\ & =\frac{1}{z}[G(k-1,n,s-1;z)+G_0(k-1,n,s;z)-G_0(k-1,n,s-1;z)]; \end{align} $$
  2. (2) if $k\geq n+s$ , $n\geq s\geq 0$ and $n\geq 2$ ,

    (3.4) $$ \begin{align} \frac{d}{dz}[G(k,n,s;z)-G_0(k,n,s;z)]=\frac{z}{1-z^2}G(k-1,n-1,s;z). \end{align} $$

We define the generating functions

$$ \begin{align*} \Phi(z)&=\Phi(u,v,w;z)=\sum\limits_{k,n,s\geq 0}G(k,n,s;z)u^{k-n-s}v^{n-s}w^{s},\\ &=1+\mathcal{L}_1(z)v+\sum\limits_{k\geq 2}\mathcal{L}_k(z)u^{k-2}w+\sum\limits_{\substack{k\geq n+s\\ n\geq s\geq 0,n\geq 2}}G(k,n,s;z)u^{k-n-s}v^{n-s}w^{s},\\ \Phi_0(z)&=\Phi_0(u,v,w;z)=\sum\limits_{k,n,s\geq 0}G_0(k,n,s;z)u^{k-n-s}v^{n-s}w^{s-1}\\ &=\sum\limits_{\substack{k\geq n+s\\ n\geq s\geq 1}}G_0(k,n,s;z)u^{k-n-s}v^{n-s}w^{s-1}. \end{align*} $$

Using (3.1), (3.3) and (3.4),

$$ \begin{align*} &\frac{d}{dz}\Phi_0(z)=\frac{1}{vz}(\Phi(z)-1-w\Phi_0(z))+\frac{u}{z}\Phi_0(z),\\ &\frac{d}{dz}(\Phi(z)-w\Phi_0(z))=\frac{vz}{1-z^2}\Phi(z)+\frac{v}{1+z}. \end{align*} $$

Eliminating $\Phi (z)$ , we obtain the differential equation satisfied by $\Phi _0(z)$ .

Proposition 3.1. $\Phi _0=\Phi _0(z)$ satisfies the following differential equation:

(3.5) $$ \begin{align} z(1-z^2)\Phi_0"+[(1-u)(1-z^2)-vz^2]\Phi_0'+(uv-w)z\Phi_0=1. \end{align} $$

We want to find the unique power series solution $\Phi _0(z)=\sum _{n=1}^\infty a_nz^n$ . From (3.5), we see that $a_1={1}/({1-u})$ , $a_2=0$ and

$$ \begin{align*}a_{n+1}=\frac{(n-1)(n-2)+(1-u+v)(n-1)-(uv-w)}{(n+1-u)(n+1)}a_{n-1},\quad n\geq 2.\end{align*} $$

Hence, for any $n\geq 1$ , we have $a_{2n}=0$ and

$$ \begin{align*} a_{2n+1}=\frac{(n-\frac{1}{2})(n-1)+(\frac{1}{2}-\frac{u}{2}+\frac{v}{2})(n-\frac{1}{2})-\frac{1}{4}(uv-w)}{(n+\frac{1}{2}-\frac{u}{2})(n+\frac{1}{2})}a_{2n-1}.\end{align*} $$

Since $(\alpha -1)+(\,\beta -1)=-1-\frac{1}{2}u+\frac{1}{2}v$ and $(\alpha -1)(\,\beta -1)=\tfrac 14(1+u-v-uv+w)$ ,

$$ \begin{align*} a_{2n+1}=\frac{(n+\alpha-1)(n+\beta-1)}{(n+\frac{1}{2}-\frac{u}{2})(n+\frac{1}{2})}a_{2n-1}=\frac{(\alpha)_n(\,\beta)_n}{(\frac{3-u}{2})_n(\frac{3}{2})_n}\frac{1}{1-u}. \end{align*} $$

Therefore, we can represent $\Phi _0(z)$ by the generalised hypergeometric function $\,_3F_2$ as displayed in the following theorem.

Theorem 3.2. We have

$$ \begin{align*}\Phi_0(k,n,s;z)=\frac{z}{1-u}\,_3F_2\bigg({\alpha,\beta,1\atop \frac{3-u}{2},\frac{3}{2}};z^2\bigg).\end{align*} $$

Finally, setting $z=1$ in Theorem 3.2, we get Theorem 1.1.

3.2 Proof of Theorem 1.2

Similarly, for nonnegative integers $k,n,s$ , we define the sums

$$ \begin{align*}G^{\star}(k,n,s;z)=\sum\limits_{\mathbf{k}\in I(k,n,s)}\mathcal{L}_{\mathbf{k}}^{\star}(z),\quad G_0^{\star}(k,n,s;z)=\sum\limits_{\mathbf{k}\in I_0(k,n,s)}\mathcal{L}_{\mathbf{k}}^{\star}(z)\end{align*} $$

with $G^{\star }(0,0,0;z)=1$ . Using (3.2), we have the following identities:

  1. (1) if $k\geq n+s$ and $n\geq s\geq 1$ ,

    (3.6) $$ \begin{align} &\frac{d}{dz} G_0^{\star}(k,n,s;z)\nonumber\\ &\quad =\frac{1}{z}[G^{\star}(k-1,n,s-1;z)+G_0^{\star}(k-1,n,s;z)-G_0^{\star}(k-1,n,s-1;z)]; \end{align} $$
  2. (2) if $k\geq n+s$ , $n\geq s\geq 0$ and $n\geq 2$ ,

    (3.7) $$ \begin{align} \frac{d}{dz}[G^{\star}(k,n,s;z)-G_0^{\star}(k,n,s;z)]=\frac{1}{z(1-z^2)}G^{\star}(k-1,n-1,s;z). \end{align} $$

We define the generating functions

$$ \begin{align*} \Phi^{\star}(z) & =\Phi^{\star}(u,v,w;z)=\sum\limits_{k,n,s\geq 0}G^{\star}(k,n,s;z)u^{k-n-s}v^{n-s}w^{s},\\ \Phi_0^{\star}(z) & =\Phi_0^{\star}(u,v,w;z)=\sum\limits_{k,n,s\geq 0}G_0^{\star}(k,n,s;z)u^{k-n-s}v^{n-s}w^{s-1}. \end{align*} $$

Then using (3.2), (3.6) and (3.7),

$$ \begin{align*} &\frac{d}{dz}\Phi_0^{\star}(z)=\frac{1}{vz}(\Phi^{\star}(z)-1-w\Phi_0^{\star}(z))+\frac{u}{z}\Phi_0^{\star}(z),\\ &\frac{d}{dz}(\Phi^{\star}(z)-w\Phi_0^{\star}(z))=\frac{v}{z(1-z^2)}\Phi^{\star}(z)-\frac{v}{z(1+z)}. \end{align*} $$

Eliminating $\Phi ^{\star }(z)$ , we get the differential equation satisfied by $\Phi _0^{\star }(z)$ .

Proposition 3.3. $\Phi _0^{\star }=\Phi _0^{\star }(z)$ satisfies the following differential equation:

(3.8) $$ \begin{align} z^2(1-z^2)(\Phi_0^{\star})"+[(1-u)z(1-z^2)-vz](\Phi_0^{\star})'+(uv-w)\Phi_0^{\star}=z. \end{align} $$

Assume that $\Phi _0^{\star }(z){\kern-1pt}={\kern-2pt}\sum _{n=1}^\infty{\kern-1pt} a_n^{\star }z^n$ . Using (3.8), we find that $a_1^{\star }{\kern-1pt}={\kern-1pt}{1}/({1{\kern-1pt}-{\kern-1pt}u{\kern-1pt}-{\kern-1pt}v+uv{\kern-1pt}-{\kern-1pt}w})$ , $a_2^{\star }=0$ and

$$ \begin{align*}a_{n}^{\star}=\frac{(n-2)(n-2-u)}{n(n-1)+n(1-u-v)+uv-w}a_{n-2}^{\star},\quad n\geq 3.\end{align*} $$

Hence, for any $n\geq 1$ , we have $a_{2n}^{\star }=0$ and

$$ \begin{align*} a_{2n+1}^{\star}=\frac{(n-\frac{1}{2}-\frac{u}{2})(n-\frac{1}{2})}{(n+\alpha^{\star}-1)(n+\beta^{\star}-1)}a_{2n-1}^{\star}=\frac{(\frac{1-u}{2})_n(\frac{1}{2})_n}{(\alpha^{\star})_n(\,\beta^{\star})_n} \frac{1}{1-u-v+uv-w}.\end{align*} $$

Therefore, we have the following theorem.

Theorem 3.4. We have

$$ \begin{align*}\Phi_0^{\star}(k,n,s;z)=\frac{z}{1-u-v+uv-w}\,_3F_2\bigg({\frac{1-u}{2},\frac{1}{2},1\atop \alpha^{\star},\beta^{\star}};z^2\bigg).\end{align*} $$

Finally, setting $z=1$ in Theorem 3.4, we get Theorem 1.2.

Footnotes

This work was supported by the Fundamental Research Funds for the Central Universities (grant number 22120210552).

References

Aoki, T., Kombu, Y. and Ohno, Y., ‘A generating function for sums of multiple zeta values and its applications’, Proc. Amer. Math. Soc. 136(2) (2008), 387395.CrossRefGoogle Scholar
Hoffman, M. E., ‘Multiple harmonic series’, Pacific J. Math. 152(2) (1992), 275290.CrossRefGoogle Scholar
Hoffman, M. E., ‘An odd variant of multiple zeta values’, Commun. Number Theory Phys. 13(3) (2019), 529567.CrossRefGoogle Scholar
Ihara, K., Kajikawa, J., Ohno, Y. and Okuda, J., ‘Multiple zeta values vs. multiple zeta-star values’, J. Algebra 332 (2011), 187208.CrossRefGoogle Scholar
Ihara, K., Kaneko, M. and Zagier, D., ‘Derivation and double shuffle relations for multiple zeta values’, Compos. Math. 142(2) (2006), 307338.CrossRefGoogle Scholar
Kaneko, M. and Tsumura, H., ‘Zeta functions connecting multiple zeta values and poly-Bernoulli numbers’, in: Various Aspects of Multiple Zeta Functions—In Honour of Professor Kohji Matsumoto’s 60th Birthday, Advanced Studies in Pure Mathematics, 84 (eds. Mishou, H., Nakamura, T., Suzuki, M. and Umegaki, Y.) (Mathematical Society of Japan, Tokyo, 2020), 181204.CrossRefGoogle Scholar
Ohno, Y. and Zagier, D., ‘Multiple zeta values of fixed weight, depth and height’, Indag. Math. (N.S.) 12(4) (2001), 483487.CrossRefGoogle Scholar
Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I., Integrals and Series, Volume 3: More Special Functions (Gordon and Breach Science Publishers, New York, 1990).Google Scholar
Takeyama, Y., ‘On a weighted sum of multiple $T$ -values of fixed weight and depth’, Bull. Aust. Math. Soc. 104 (2021), 398405.CrossRefGoogle Scholar
Zagier, D., ‘Values of zeta functions and their applications’, in: First European Congress of Mathematics, Vol. II (Paris, 1992), (eds. Joseph, A., Mignot, F., Murat, F., Prum, B. and Rentschler, R.), Progress in Mathematics, 120 (Birkhäuser, Basel, 1994), 497512.CrossRefGoogle Scholar
Zhao, J., Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values, Series on Number Theory and Its Applications, 12 (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).CrossRefGoogle Scholar