No CrossRef data available.
Article contents
REFLEXIVITY INDEX OF THE PRODUCT OF SOME TOPOLOGICAL SPACES AND LATTICES
Published online by Cambridge University Press: 27 March 2023
Abstract
We introduce a technique that is helpful in evaluating the reflexivity index of several classes of topological spaces and lattices. The main results are related to products: we give a sufficient condition for the product of a topological space and a nest of balls to have low reflexivity index and determine the reflexivity index of all compact connected 2-manifolds.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
This research was supported by the National Natural Science Foundation of China (Grant No. 11871021).
References
Alexander, B., Lex, O. and Tymchatyn, E. D., ‘On minimal maps of 2-manifolds’, Ergodic Theory Dynam. Systems 25 (2005), 41–57.Google Scholar
Davidson, K. R., Nest Algebras. Triangular Forms for Operator Algebras on Hilbert Space (Longman, New York, 1988).Google Scholar
Gottschalk, W. H., ‘Orbit-closure decompositions and almost periodic properties’, Bull. Amer. Math. Soc. (N.S.) 50 (1944), 915–919.CrossRefGoogle Scholar
Halmos, P. R., ‘Reflexive lattices of subspaces’, J. Lond. Math. Soc. (2) 4 (1971), 257–263.CrossRefGoogle Scholar
Harrison, K. J. and Ward, J. A., ‘Reflexive nests of finite subsets of a Banach space’, J. Math. Anal. Appl. 420 (2014), 1468–1477.CrossRefGoogle Scholar
Harrison, K. J. and Ward, J. A., ‘The reflexivity index of a finite distributive lattice of subspaces’, Linear Algebra Appl. 455 (2014), 73–81.CrossRefGoogle Scholar
Harrison, K. J. and Ward, J. A., ‘The reflexivity index of a lattice of sets’, J. Aust. Math. Soc. 97 (2014), 237–250.CrossRefGoogle Scholar
Kronecker, L., N
$\ddot{a}$
herungsweise ganzzahlige Aufl
$\ddot{o}$
sung linearer Gleichungen (Chelsea, New York, 1968).Google Scholar


Longstaff, W. E., ‘Reflexive index of a family of subspaces’, Bull. Aust. Math. Soc. 90 (2014), 134–140.CrossRefGoogle Scholar
Ma, B. and Harrison, K. J., ‘Reflexivity index and irrational rotations’, Bull. Aust. Math. Soc. 104 (2021), 493–505.CrossRefGoogle Scholar
Moise, E. E., Geometric Topology in Dimensions 2 and 3 (Springer-Verlag, New York, 1977).CrossRefGoogle Scholar
Yang, Z. Q. and Zhao, D. S., ‘On reflexive closed set lattices’, Comment. Math. Univ. Carolin. 51 (2010), 143–154.Google Scholar
Zhao, D. S., ‘Reflexive index of a family of sets’, Kyungpook Math. J. 54 (2014), 263–269.CrossRefGoogle Scholar