Published online by Cambridge University Press: 27 July 2022
Signature theory plays an important part in the field of reliability. In this paper, the ordered multi-state system signature and its related properties are discussed based on a life-test of independent and non-identical coherent or mixed systems with independent and identical binary-state components. Dynamic properties of these systems are considered through a new notion called dynamic multi-state system signature, and then related comparisons are made based on system lifetimes and costs. Finally, the theoretical results established are illustrated with some specific examples to demonstrate the use of dynamic ordered multi-state system signature in evaluating used multi-state coherent or mixed systems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.