Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T13:07:25.691Z Has data issue: false hasContentIssue false

SUMMABILITY AND ASYMPTOTICS OF POSITIVE SOLUTIONS OF AN EQUATION OF WOLFF TYPE

Published online by Cambridge University Press:  14 May 2024

CHUNHONG LI
Affiliation:
College of Mathematics and Computer Science, Guangxi Science and Technology Normal University, Laibin 546100, Guangxi, PR China e-mail: [email protected]
YUTIAN LEI*
Affiliation:
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, PR China
Rights & Permissions [Opens in a new window]

Abstract

We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation

$$ \begin{align*} w(i)=W_{\beta,\gamma}(w^q)(i), \quad i \in \mathbb{Z}^n. \end{align*} $$

Here, $n \geq 1$, $\min \{q,\beta \}>0$, $1<\gamma \leq 2$ and $\beta \gamma <n$. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of $w(i)$ when $|i| \to \infty $.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1. Introduction

The Wolff potential of a nonnegative function $f \in L_{loc}^1(\mathbb {R}^n)$ is defined as in [Reference Hedberg and Wolff10] by

$$ \begin{align*} W_{\beta,\gamma}(f)(x)=\int_0^{\infty} \bigg[\int_{B_t(x)} \frac{f(y)}{t^{n-\beta\gamma}} \,dy\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t}, \end{align*} $$

where $1<\gamma <\infty $ , $\beta>0$ , $\beta \gamma <n$ and $B_t(x)$ is a ball of radius t centred at x. It is not difficult to see that $W_{1,2}(f)$ is the Newton potential and $W_{{\alpha }/{2},2}(f)$ is the Reisz potential.

The Wolff potentials are helpful for understanding nonlinear partial differential equations (see [Reference Kilpelaiinen and Maly15, Reference Labutin16, Reference Phuc and Verbitsky23]). For example, if $\mu $ is a positive Borel measure, $W_{1,\gamma }(\mu )$ can be used to estimate positive solutions of the $\gamma $ -Laplace equation

(1.1) $$ \begin{align} {-}\mbox{div}(|\nabla u|^{\gamma-2}\nabla u)=\mu. \end{align} $$

If $\inf _{R^n}u=0$ , then there exist positive constants $C_1$ and $C_2$ such that (see [Reference Kilpelaiinen and Maly15, Reference Phuc and Verbitsky23])

(1.2) $$ \begin{align} C_1W_{1,\gamma}(\mu)(x) \leq u(x) \leq C_2W_{1,\gamma}(\mu)(x), \quad x \in \mathbb{R}^n. \end{align} $$

Set $R(x)=u(x)[W_{1,\gamma }(\mu )(x)]^{-1}$ . Then u solves the integral equation

(1.3) $$ \begin{align} u(x)=R(x)W_{\beta,\gamma}(\mu)(x) \quad\mbox{and}\quad u>0, \quad x\in\mathbb{R}^n, \end{align} $$

with $\beta =1$ , where $R(x)$ is a double-bounded function (in view of (1.2)). When ${\mu =u^q}$ , the qualitative properties of positive solutions of (1.3) are well studied. Existence results can be seen in [Reference Lei and Li17] and the radial symmetry of positive solutions can be seen in [Reference Chen and Li4, Reference Liu21]. See also [Reference Ma, Chen and Li22] for the integrability of finite energy solutions and [Reference Sun and Lei25] for the asymptotic behaviour of those solutions at infinity which shows that the decay rate of those positive solutions of (1.1) with $\mu =u^q$ is the same as the fast decay rate in [Reference Franca8, Reference Kawano, Yanagida and Yotsutani14].

Equation (1.3) with $R(x) \equiv 1$ and $\mu \!=\!u^q$ is a generalisation of the Hardy–Littlewood– Sobolev integral equation. Namely, when $\gamma =2$ and $\beta =\alpha /2$ , (1.3) reduces to

(1.4) $$ \begin{align} u(x) = \int_{\mathbb{R}^{n}} \frac{u^{q}(y)}{|x-y|^{n-\alpha}}\,dy \quad\mbox{and}\quad u>0, \quad x\in \mathbb{R}^n. \end{align} $$

This equation is associated with the extremal functions of the Hardy–Littlewood– Sobolev inequality (see [Reference Lieb20]):

(1.5) $$ \begin{align} \int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\frac{f(x)g(y)}{|x-y|^{n-\alpha}}\,dx\,dy \leq C(n,s,\alpha)\|f\|_{L^r(\mathbb{R}^n)}\|g\|_{L^s(\mathbb{R}^n)}, \end{align} $$

where $\min \{s,r\}>1$ , ${1}/{r}+{1}/{s}={(n+\alpha )}/{n}$ , $f \in L^r(\mathbb {R}^n)$ , $g \in L^s(\mathbb {R}^n)$ . Positive solutions of (1.4) and the corresponding partial differential equations of the Lane–Emden type are well studied. In particular, see [Reference Chen, Jin, Li and Lim2, Reference Jin and Li13] for the integrability of positive finite energy solutions of the corresponding system. Based on this result, [Reference Lei, Li and Ma18] gives the asymptotic behaviour of those positive solutions.

In 2015, Huang et al. [Reference Huang, Li and Yin12] used (1.5) to prove a discrete Hardy–Littlewood–Sobolev inequality and deduce the Euler–Lagrange system satisfied by the extremal sequences. When $f \equiv g$ , such a system can be seen as the discrete form of (1.4). Chen and Zheng [Reference Chen and Zheng6] obtained the summability of some positive solutions and their asymptotic behaviour is obtained in [Reference Lei, Li and Tang19].

The discrete Wolff potential is used to study some nonlinear problems in [Reference Cascante, Ortega and Verbitsky1, Reference Hedberg and Wolff10, Reference Phuc and Verbitsky23]. Let $f=f(i)$ , $i \in \mathbb {Z}^n$ , be a nonnegative sequence. Define a discrete form of the Wolff potential by

$$ \begin{align*} W_{\beta,\gamma}(f)(i)=\int_0^{\infty} \bigg[\sum_{j \in Z^n,|j-i|<t} \frac{f(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t}. \end{align*} $$

The discrete form of (1.3) is

(1.6) $$ \begin{align} w(i)=R(i)W_{\beta,\gamma}(w^{q})(i), \quad i\in \mathbb{Z}^n, \end{align} $$

where

(1.7) $$ \begin{align} n \geq 1, \ \beta>0, \ \gamma \in (1,2], \ \beta\gamma<n, \ q>0, \ C^{-1} \leq R(i) \leq C. \end{align} $$

Here, $C>1$ is an absolute constant and such an $R(i)$ is called a double-bounded sequence. This equation appears in the study of crystal physics, neural networks and other nonlinear problems (see [Reference Li7, Reference Gassner, Probst, Lauenstein and Hermansson9, Reference Hua and Li11]). We investigate the summability and the asymptotic behaviour of positive solutions of (1.6). We use a regularity lifting lemma (Lemma 2.2) to obtain an initial summability interval of positive solutions. We then extend the interval to an optimal one by means of a Wolff-type inequality (Lemma 2.1).

We now state the main results in this paper. Write

$$ \begin{align*} s_0:=\frac{n(q-\gamma+1)}{\beta\gamma}. \end{align*} $$

Theorem 1.1. Assume $w \in l^{s_0}(\mathbb {Z}^n)$ solves (1.6) with (1.7). If

(1.8) $$ \begin{align} q \geq \frac{n(\gamma-1)}{n-\beta\gamma}, \end{align} $$

we have the following summability and asymptotic behaviour results:

  1. (i) w belongs to $l^s(\mathbb {Z}^n)$ for any $s \in ({n(\gamma -1)}/{(n-\beta \gamma )},\infty ]$ and the left end point ${n(\gamma -1)}/{(n-\beta \gamma )}$ is optimal;

  2. (ii) if $w(i)$ belongs to a radially symmetric and decreasing surface, then the sequence $w(i) |i|^{{(n-\beta \gamma )}/{(\gamma -1)}}$ is double-bounded.

Remark 1.2. Condition (1.8) in Theorem 1.1 is not essential. In fact, by a similar argument to that in [Reference Lei and Li17], (1.6) has no positive solution when $0<q \leq {n(\gamma -1)}/{(n-\beta \gamma )}$ . An analogous nonexistence result for another discrete Wolff-type equation can be seen in [Reference Phuc and Verbitsky23].

Remark 1.3. The assumption ‘the deceasing surface’ in Theorem 1.1(ii) is not essential. In fact, for bounded i, it is easy to see that $w(i) |i|^{{(n-\beta \gamma )}/{(\gamma -1)}}$ is double-bounded. Therefore, we only consider the case when $|i|$ is sufficiently large. By the ideas in Step 1 of the proof of [Reference Chen and Li4, Theorem 1], and by the same argument in [Reference Lei, Li and Tang19, Section 2.1], we also deduce that $w(i)$ is decreasing about some $i_0 \in \mathbb {Z}^n$ when $|i|$ is large.

Remark 1.4. When $\beta =\alpha /2$ , $\gamma =2$ , Theorem 1.1(i) and (ii) are consistent with the results in [Reference Chen and Zheng6, Reference Lei, Li and Tang19], respectively. The initial summability condition $w \in l^{s_0}(\mathbb {Z}^n)$ appears in [Reference Chen, Li and Ou5], but is different to the initial integrability condition in [Reference Ma, Chen and Li22, Reference Sun and Lei25]. In fact, $s_0$ can take all the values mentioned in these papers for the different critical exponents q which determine the existence of positive solutions (see [Reference Serrin and Zou24]).

2. Preliminaries

2.1. Wolff-type inequality

In 2008, Phuc and Verbitsky [Reference Phuc and Verbitsky23] gave the following relation between the Wolff potential and the Riesz potential. If $q>\gamma -1>0$ , there exists ${C>1}$ such that

$$ \begin{align*} C^{-1}\|W_{\beta,\gamma}(\mu)\|_{L^q(\mathbb{R}^n)}^q \leq \|I_{\beta\gamma}(\mu)\|_{L^{q/(\gamma-1)}(\mathbb{R}^n)}^{q/(\gamma-1)} \leq C\|W_{\beta,\gamma}(\mu)\|_{L^q(\mathbb{R}^n)}^q. \end{align*} $$

Combining this with the Hardy–Littlewood–Sobolev inequality, one can obtain the Wolff-type inequality (see [Reference Ma, Chen and Li22, Corollary 2.1]):

(2.1) $$ \begin{align} \|W_{\beta,\gamma}(f)\|_{L^q(\mathbb{R}^n)} \leq C \|f\|_{L^{qn/[n(\gamma-1)+q\beta\gamma]}(\mathbb{R}^n)}^{1/(\gamma-1)}. \end{align} $$

For the discrete sequence $f(i)$ , we have the same kind of inequality.

Lemma 2.1. When $q>\gamma -1>0$ ,

(2.2) $$ \begin{align} \|W_{\beta,\gamma}(f)(i)\|_{l^q(\mathbb{Z}^n)} \leq C \|f(i)\|_{l^{qn/[n(\gamma-1)+q\beta\gamma]}(\mathbb{Z}^n)}^{1/(\gamma-1)}. \end{align} $$

Proof. Let $\epsilon \in (0, 1/3)$ be sufficiently small and in (2.1), take

$$ \begin{align*}f(x) = \begin{cases} f(i) &\mbox{for}\ |x-i|<\epsilon \mbox{ and all } i \in \mathbb{Z}^n, \\ 0 &\mbox{otherwise}. \end{cases} \end{align*} $$

We claim that

(2.3) $$ \begin{align} \|f\|_{L^{qn/[n(\gamma-1)+q\beta\gamma]}(\mathbb{R}^n)} \leq C \|f(i)\|_{l^{qn/[n(\gamma-1)+q\beta\gamma]}(\mathbb{Z}^n)}. \end{align} $$

In fact, since $B_{\epsilon }(i) \cap B_{\epsilon }(j) =\emptyset $ for $i \neq j$ ,

$$ \begin{align*}\begin{aligned} \int_{\mathbb{R}^n} f^{qn/[n(\gamma-1)+q\beta\gamma]}(y)\,dy & =\sum_{i \in \mathbb{Z}^n} \int_{B_\epsilon(i)}f^{qn/[n(\gamma-1)+q\beta\gamma]}(i)\,dy \\ & =|B_1(0)|\epsilon^n \sum_{i \in \mathbb{Z}^n} f^{qn/[n(\gamma-1)+q\beta\gamma]}(i). \end{aligned} \end{align*} $$

This implies (2.3).

However, when $t>2\epsilon $ , we have $\bigcup _{|j-i|<t-2\epsilon }B_{\epsilon }(j) \subset B_{t-\epsilon }(i) \subset B_t(x)$ . Therefore,

(2.4) $$ \begin{align} \int_{B_t(x)}f(y)\,dy \geq c\sum_{j \in \mathbb{Z}^n,|j-i|<t-2\epsilon}f(j)\int_{B_\epsilon(j)}dy \geq c|B_1(0)|\epsilon^{n}\sum_{j \in \mathbb{Z}^n,|j-i|<t-2\epsilon}f(j). \end{align} $$

Since $i,j \in \mathbb {Z}^n$ , when $\epsilon $ is sufficiently small, $|j-i| \geq 2\epsilon $ for $i \neq j,$ and when $t>2\epsilon $ ,

$$ \begin{align*} \{j \in \mathbb{Z}^n : |j-i|<t-2\epsilon\}=\{j \in \mathbb{Z}^n : |j-i|<t\} \quad \mbox{for all } i \in \mathbb{Z}^n. \end{align*} $$

Therefore,

$$ \begin{align*} \sum_{j \in \mathbb{Z}^n,|j-i|<2\epsilon}f(j)=0 \quad \mbox{and} \quad \sum_{j \in \mathbb{Z}^n,|j-i|<t-2\epsilon}f(j)=\sum_{j \in \mathbb{Z}^n,|j-i|<t}f(j), \end{align*} $$

when $\epsilon $ is sufficiently small. Thus, from (2.4),

$$ \begin{align*} W_{\beta,\gamma}(f)(i) =0+\int_{2\epsilon}^\infty \bigg[\sum_{j \in \mathbb{Z}^n,|j-i|<t}f(j)\bigg]^{{1}/{(\gamma-1)}} t^{{(\beta\gamma-n)}{(\gamma-1)}}\,\frac{dt}{t} \leq C W_{\beta,\gamma}(f)(x). \end{align*} $$

Inserting this result and (2.3) into (2.1), we obtain (2.2).

2.2. Regularity lifting lemma

Let V be a topological vector space. Suppose there are two extended norms, $\|\cdot \|_X, \|\cdot \|_Y :V \to [0,\infty ]$ , defined on V (that is, allowing that the norm of an element in V might be infinity). Let

$$ \begin{align*} X := \{ v \in V : \|v\|_X < \infty\} \quad \mbox{and} \quad Y := \{ v \in V : \|v\|_Y < \infty\}. \end{align*} $$

Lemma 2.2 [Reference Chen and Li3, Theorem 3.3.1].

Let T be a contraction map from X into itself and from Y into itself. Assume that $f \in X$ and that there exists a function $g \in Z := X \cap Y$ such that $f = Tf + g$ in X. Then f also belongs to Z.

This regularity lifting lemma can be used to study integral equations involving the Riesz potentials and the Wolff potentials. It was used in [Reference Chen, Jin, Li and Lim2, Reference Chen, Li and Ou5, Reference Chen and Zheng6, Reference Jin and Li13, Reference Ma, Chen and Li22] to obtain better integrability results for positive solutions of Hardy–Littlewood–Sobolev-type equations, Stein–Weiss-type equations, discrete Stein–Weiss-type equations and Wolff-type equations.

3. Summability

Theorem 3.1. Assume $w \in l^{s_0}(\mathbb {Z}^n)$ solves (1.6) with (1.7) and (1.8). Then,

(3.1) $$ \begin{align} w \in l^s(\mathbb{Z}^n) \quad \mbox{for all } {s} \in \bigg(\frac{n(\gamma-1)}{n-\beta\gamma},\infty \bigg]. \end{align} $$

Proof. By [Reference Chen and Zheng6, Lemma 2.2] or [Reference Huang, Li and Yin12, Lemma 2.1], $w \in l^{s_0}(\mathbb {Z}^n)$ implies $w \in l^{\infty }(\mathbb {Z}^n)$ , and hence

(3.2) $$ \begin{align} w \in l^{s}(\mathbb{Z}^n) \quad \mbox{for all } s \in [s_0,\infty]. \end{align} $$

From (1.8), it follows that $s_0 \geq {n((\gamma -1))}/{(n-\beta \gamma )}$ . We lift the summability from (3.2) to (3.1).

Step 1. Establish an operator equation. For $A>0$ , set

$$ \begin{align*}w_A(i) = \begin{cases} w(i) & \mbox{if } |i|>A, \\ 0 & \mbox{otherwise}, \end{cases} \end{align*} $$

and $w_B(i)=w(i)-w_A(i)$ . Let $\sigma $ satisfy

(3.3) $$ \begin{align} \frac{2-\gamma}{s_0}<\frac{1}{\sigma}<\frac{2-\gamma}{s_0} +\frac{n-\beta\gamma}{n}. \end{align} $$

For $g \in l^\sigma (\mathbb {Z}^n)$ , define operators T and S by

$$ \begin{align*} Tg:=R(i)\int_0^\infty \bigg(\frac{\sum_{|j-i|<t}w^{q}(j)} {t^{n-\beta\gamma}}\bigg)^{{(2-\gamma)}/{(\gamma-1)}} \frac{\sum_{|j-i|<t}w_A^{q-1}(j)g(j)}{t^{n-\beta\gamma}} \,\frac{dt}{t}, \end{align*} $$
$$ \begin{align*} Sg:=\int_0^\infty \bigg(\frac{\sum_{|j-i|<t}w_A^{q-1}(j)g(j)} {t^{n-\beta\gamma}}\bigg)^{{1}/{(\gamma-1)}} \,\frac{dt}{t} \end{align*} $$

and write

$$ \begin{align*} F:=R(x)\int_0^\infty \bigg(\frac{\sum_{|j-i|<t}w^{q}(j)} {t^{n-\beta\gamma}}\bigg)^{{(2-\gamma)}/{(\gamma-1)}} \frac{\sum_{|j-i|<t}w_B^{q}(j)}{t^{n-\beta\gamma}} \,\frac{dt}{t}. \end{align*} $$

Clearly, w is a solution of the operator equation $g=Tg+F$ .

Step 2. T is a contraction map from $l^\sigma (\mathbb {Z}^n)$ into itself. In fact, the Hölder inequality and (1.7) imply $|Tg| \leq Cw^{2-\gamma } |Sg|^{\gamma -1}$ . Using the Hölder inequality again yields

(3.4) $$ \begin{align} \|Tg\|_\sigma \leq C\|w\|_{s_0}^{2-\gamma} \|Sg\|_t^{\gamma-1}, \end{align} $$

where $t>0$ satisfies

(3.5) $$ \begin{align} \frac{1}{\sigma}=\frac{2-\gamma}{s_0}+\frac{\gamma-1}{t}. \end{align} $$

Hereafter, for simplicity, we denote $\|\cdot \|_{l^s(\mathbb {Z}^n)}$ by $\|\cdot \|_s$ .

By (3.3) and (3.5),

(3.6) $$ \begin{align} 0<\frac{\gamma-1}{t}<1-\frac{\beta\gamma}{n}. \end{align} $$

Therefore, we can use Lemma 2.1 to obtain

(3.7) $$ \begin{align} \|Sg\|_t \leq C\|w_A^{q-1} g\|_{{nt}/{(n(\gamma-1)+t\beta\gamma)}}^{{1}/{(\gamma-1)}}. \end{align} $$

Since (3.5) leads to

$$ \begin{align*} \frac{\gamma-1}{t}-\frac{1}{\sigma} =\frac{q-1}{s_0}-\frac{\beta\gamma}{n}, \end{align*} $$

it follows from (3.7) and the Hölder inequality that $\|Sg\|_t^{\gamma -1} \leq C\|w_A\|_{s_0}^{q-1} \|g\|_\sigma $ . Inserting this into (3.4) yields

$$ \begin{align*} \|Tg\|_\sigma \leq C\|w\|_{s_0}^{2-\gamma} \|w_A\|_{s_0}^{q-1} \|g\|_\sigma. \end{align*} $$

Since $w \in l^{s_0}(\mathbb {Z}^n)$ ,

$$ \begin{align*} C\|w\|_{s_0}^{2-\gamma} \|w_A\|_{s_0}^{q-1} \leq \tfrac{1}{2} \end{align*} $$

when A is sufficiently large. Thus, T is a shrinking operator. Since T is linear, it follows that T is a contraction map from $l^{\sigma }(\mathbb {Z}^n)$ to itself as long as $\sigma $ satisfies (3.3).

Step 3. Estimating F to lift the regularity. Similar to the derivation of (3.4) and (3.7), for all $\sigma $ satisfying (3.3), we also deduce that

$$ \begin{align*} \|F\|_\sigma \leq C\|w\|_{s_0}^{2-\gamma} \|w_B^{q}\|_{{nt}/{(n(\gamma-1)+t\beta\gamma)}}, \end{align*} $$

where t satisfies (3.6). Noting $w\in l^{s_0}(\mathbb {Z}^n)$ and the definition of $w_B$ , we have $F \in l^{\sigma }(\mathbb {Z}^n)$ as long as $\sigma $ satisfies (3.3). Taking $X=l^{s_0}(\mathbb {Z}^n)$ , $Y=l^{\sigma }(\mathbb {Z}^n)$ and $Z=l^{s_0}(\mathbb {Z}^n) \cap l^{\sigma }(\mathbb {Z}^n)$ in Lemma 2.2, yields $w \in l^{\sigma }(\mathbb {Z}^n)$ for all $\sigma $ satisfying (3.3).

Step 4. Extend the interval from (3.3) to that in (3.1). Let

(3.8) $$ \begin{align} \frac{1}{s} \in \bigg(0,\frac{n-\beta\gamma}{n(\gamma-1)}\bigg). \end{align} $$

Then we can use Lemma 2.1 to deduce that

(3.9) $$ \begin{align} \|w\|_s \leq C\|w^{q}\|_{{ns}/{(n(\gamma-1)+s\beta\gamma)}}^{{1}/{(\gamma-1)}} = C\|w\|_{{nsq}/{(n(\gamma-1)+s\beta\gamma)}}^{{q}/{(\gamma-1)}}. \end{align} $$

Noting (3.3), from (3.9), we see that $\|w\|_s <\infty $ as long as s satisfies

(3.10) $$ \begin{align} \frac{2-\gamma}{s_0}< \frac{n(\gamma-1)+s\beta\gamma}{nsq} <\frac{2-\gamma}{s_0}+\frac{n-\beta\gamma}{n}. \end{align} $$

Next, we will prove that (3.10) is true as long as (3.8) holds. We only need to verify

(3.11) $$ \begin{align} \frac{n-\beta\gamma}{n(\gamma-1)} \leq \frac{q}{\gamma-1}\bigg[\frac{2-\gamma}{s_0}+\frac{n-\beta\gamma}{n}\bigg] -\frac{\beta\gamma}{n(\gamma-1)}. \end{align} $$

In fact,

$$ \begin{align*}\begin{aligned} \frac{n-\beta\gamma}{n(\gamma-1)} &\leq \frac{q}{\gamma-1}\bigg[\frac{\beta\gamma(2-\gamma)}{n(q-\gamma+1)} +\frac{n-\beta\gamma}{n}\bigg]-\frac{\beta\gamma}{n(\gamma-1)}\\ &\Longleftrightarrow 1 \leq q\bigg[\frac{\beta\gamma}{n}\bigg(\frac{2-\gamma}{q-\gamma+1}-1\bigg)+1\bigg] =q\bigg[\frac{\beta\gamma}{n}\frac{1-q}{q-\gamma+1}+1\bigg]\\ &\Longleftrightarrow \beta\gamma q(q-1) \leq n(q-\gamma+1)(q-1)\\ &\Longleftrightarrow q \geq \frac{n(\gamma-1)}{n-\beta\gamma}. \end{aligned} \end{align*} $$

Thus, (3.11) is true, and hence $w \in l^s(\mathbb {Z}^n)$ for all s satisfying (3.8). Combining this with (3.2), we see that (3.1) is true.

Step 5. If

(3.12) $$ \begin{align} 1/s \geq (n-\beta\gamma)/[n(\gamma-1)], \end{align} $$

we claim $w \not \in l^s(\mathbb {Z}^n)$ . In fact, when $|i|$ is suitably large,

$$ \begin{align*} w(i) \geq c\int_{2|i|}^\infty \bigg[\frac{\sum_{|j| \leq 1}w^q(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{\gamma}} \geq c|i|^{{(\beta\gamma-n)}/{(\gamma-1)}}. \end{align*} $$

Therefore, by (3.12), for suitably large $M>0$ ,

$$ \begin{align*} \sum_{|i| \geq M} w^s(i) \geq c\sum_{|i| \geq M} |i|^{{s(\beta\gamma-n)}/{(\gamma-1)}}=\infty. \end{align*} $$

The claim is proved.

Steps 4 and 5 show that the integrability interval is the one in (3.1). The proof of Theorem 3.1 is complete.

4. Decay rates

Proposition 4.1. Assume $w \in l^{s_0}(\mathbb {Z}^n)$ solves (1.6) with (1.7) and (1.8). If $w(i)$ belongs to a radially symmetric and decreasing surface, we can find $C>1$ such that for large  $|i|$ ,

$$ \begin{align*} C^{-1} |i|^{{(\beta\gamma-n)}/{(\gamma-1)}} \leq w(i) \leq C |i|^{{(\beta\gamma-n)}/{(\gamma-1)}}. \end{align*} $$

Proof. Without loss of generality, we assume $w(i)$ is radially symmetric about $i_0$ . Write

$$ \begin{align*} \omega(r)=w(i) \quad with \quad r=|i-i_0|. \end{align*} $$

Step 1. For any $s>{(n-\beta \gamma )}/{n(\gamma -1)}$ , we can find $C>0$ such that for large $R>0$ ,

(4.1) $$ \begin{align} \omega(R) \leq CR^{-n/s}. \end{align} $$

In fact, from Theorem 3.1, $w \in l^s(\mathbb {Z}^n)$ when s belongs to the interval of (3.1). Thus, we can denote $\sum _{i \in \mathbb {Z}^n}w^s(i)$ by a constant $C_s$ . In view of the monotonicity of $\omega (R)$ , we deduce that

$$ \begin{align*} c \ \omega^s(R) R^n \leq \sum_{R/2<|j-i_0|<R} w^s(j) \leq C_s. \end{align*} $$

Thus, (4.1) is verified.

Step 2. There exists $c>0$ such that $w(i) \geq c|i|^{-{(n-\beta \gamma )}/{(\gamma -1)}}$ for large $|i|$ . In fact, if ${|j-i_0|<2}$ , then for large $|i|$ and $t \in (2|i|,4|i|)$ ,

$$ \begin{align*} |j-i| \leq |j-i_0|+|i-i_0| <2+|i_0|+|i|<t. \end{align*} $$

This means $\{j : |j-i_0|<2\} \subset \{j : |j-i|<t\}$ . Therefore, by the monotonicity of $\omega (r)$ ,

$$ \begin{align*} \sum_{|j-i|<t}w^{q}(j) \geq \sum_{|j-i_0|<2}w^{q}(j) \geq \omega^q(2)\bigg(\sum_{|j-i_0|<2}1\bigg)=c, \end{align*} $$

when $t \in (2|i|,4|i|)$ . Thus,

$$ \begin{align*} w(i) \geq \int_{2|i|}^{4|i|} \bigg[\frac{\sum_{|j-i|<t}w^{q}(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t} \geq c \int_{2|i|}^{4|i|} \frac{1}{t^{{(n-\beta\gamma)}/({\gamma-1)}}} \,\frac{dt}{t} \geq \frac{c}{|i|^{{(n-\beta\gamma)}/{(\gamma-1)}}}. \end{align*} $$

Step 3. Estimate the upper bound of $w(i)$ for large $|i|$ . Clearly,

$$ \begin{align*}\begin{array}{ll} w(i) & \leq C\displaystyle\int_0^{{|i|}/{2}} \bigg[\frac{\sum_{|j-i|<t}w^{q}(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t} +C\displaystyle\int_{{|i|}/{2}}^{\infty} \bigg[\frac{\sum_{|j-i|<t}w^{q}(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t} \\ &:=C(I_1+I_2). \end{array} \end{align*} $$

Claim 1. There exists $C>0$ such that $ I_1 \leq C|i|^{-{(n-\beta \gamma )}/{(\gamma -1)}} $ for large $|i|$ . In fact, we have ${|i|}/{2} \leq |j| \leq {3|i|}/{2}$ when $|j-i|<t$ and $t<{|i|}/{2}$ . By virtue of the monotonicity of $\omega (r)$ , for large $|i|$ ,

$$ \begin{align*} w(j)=\omega(|j-i_0|) \leq C \omega\bigg(\frac{|j|}{3}\bigg) \leq C \omega\bigg(\frac{|i|}{6}\bigg) \end{align*} $$

when $|j-i|<t$ and $t<{|i|}/{2}$ . Therefore, by (4.1),

(4.2) $$ \begin{align} |i|^{{(n-\beta\gamma)}/{(\gamma-1)}}I_1 & \leq C|i|^{{(n-\beta\gamma)}/{(\gamma-1)}} \displaystyle\int_0^{{|i|}/{2}} \bigg[\frac{\omega^q(|i|/6)t^n }{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}}\,\frac{dt}{t} \notag\\ & \leq C|i|^{{(n-\beta\gamma)}/{(\gamma-1)} -{nq}/{s(\gamma-1)}} \displaystyle\int_0^{{|i|}/{2}} t^{{\beta\gamma}/{(\gamma-1)}} \,\frac{dt}{t} \leq C|i|^{{n}/{(\gamma-1)} -{nq}/{s(\gamma-1)}}. \end{align} $$

We choose s approaching the left end point of the interval of (3.1) such that

(4.3) $$ \begin{align} 1-\frac{q}{s}<0. \end{align} $$

Inserting this in (4.2) proves the claim.

Claim 2. There exists $C>0$ such that $ I_2 \leq C|i|^{-{(n-\beta \gamma )}/{(\gamma -1)}} $ for large $|i|$ . In fact, since $(\gamma -1)^{-1} \geq 1$ , Jensen’s inequality gives

$$ \begin{align*} I_2 &\leq C\displaystyle\int_{{|i|}/{2}}^{\infty} \bigg[\frac{\sum_{|j| \leq 2|i_0|,|j-i|<t}w^q(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t} +C\displaystyle\int_{{|x|}/{2}}^{\infty} \bigg[\frac{\sum_{|j|>2|i_0|,|j-i|<t}w^q(j)}{t^{n-\beta\gamma}}\bigg]^{{1}/{(\gamma-1)}} \,\frac{dt}{t}\\ &:=C(I_{21}+I_{22}). \end{align*} $$

Since $\sum _{|j| \leq 2|i_0|}w^q(j) \leq C$ ,

$$ \begin{align*} |i|^{{(n-\beta\gamma)}/{(\gamma-1)}}I_{21} \leq C|i|^{{(n-\beta\gamma)}/{(\gamma-1)}} \int_{{|i|}/{2}}^{\infty} t^{{(\beta\gamma-n)}/{(\gamma-1)}} \,\frac{dt}{t} \leq C. \end{align*} $$

However, when $|j|> 2|i_0|$ , we have $|j-i_0| \geq |j|-|i_0|> {|j|}/{2}$ . Applying the monotonicity of $\omega (r)$ and (4.1),

$$ \begin{align*} w^q(j)=\omega^q(|j-i_0|) \leq \omega^q\bigg(\frac{|j|}{2}\bigg) \leq C\bigg(\frac{|j|}{2}\bigg)^{-nq/s}. \end{align*} $$

By this result and (4.3),

$$ \begin{align*} \sum_{|j|> 2|i_0|,|j-i|<t}w^q(j) \leq C\sum_{2|i_0|<|j|<|i|+t} |j|^{-{nq}/{s}} \leq C. \end{align*} $$

Inserting this into $I_{22}$ yields

$$ \begin{align*} |i|^{{(n-\beta\gamma)}/{(\gamma-1)}}I_{22} \leq C|i|^{{(n-\beta\gamma)}/{(\gamma-1)}} \int_{{|i|}/{2}}^{\infty} t^{-{(n-\beta\gamma)}/{(\gamma-1)}} \,\frac{dt}{t} \leq C. \end{align*} $$

Claim 2 is proved and the proof of Proposition 4.1 is complete.

Acknowledgement

The authors thank the unknown referees very much for their helpful suggestions.

References

Cascante, C., Ortega, J. and Verbitsky, I., ‘Nonlinear potentials and two-weight trace inequalities for general dyadic and radial kernels’, Indiana Univ. Math. J. 53 (2004), 845882.CrossRefGoogle Scholar
Chen, W., Jin, C., Li, C. and Lim, J., ‘Weighted Hardy–Littlewood–Sobolev inequalities and systems of integral equations’, Discrete Contin. Dyn. Syst. 2005(supplement) (2005), 164172.Google Scholar
Chen, W. and Li, C., Methods on Nonlinear Elliptic Equations, Differential Equations and Dynamical Systems, 4 (American Institute of Mathematical Sciences, Springfield, MO, 2010).Google Scholar
Chen, W. and Li, C., ‘Radial symmetry of solutions for some integral systems of Wolff type’, Discrete Contin. Dyn. Syst. 30 (2011), 10831093.CrossRefGoogle Scholar
Chen, W., Li, C. and Ou, B., ‘Qualitative properties of solutions for an integral equation’, Discrete Contin. Dyn. Syst. 12 (2005), 347354.CrossRefGoogle Scholar
Chen, X. and Zheng, X., ‘Optimal summation interval and nonexistence of positive solutions to a discrete system’, Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), 17201730.Google Scholar
, W. E and Li, D., ‘On the crystallization of 2D hexagonal lattices’, Comm. Math. Phys. 286 (2009), 10991140.CrossRefGoogle Scholar
Franca, M., ‘Classification of positive solutions of $p$ -Laplace equation with a growth term’, Arch. Math. (Brno) 40 (2004), 415434.Google Scholar
Gassner, H., Probst, M., Lauenstein, A. and Hermansson, K., ‘Representation of intermolecular potential functions by neural networks’, J. Phys. Chem. A 102 (1998), 45964605.CrossRefGoogle Scholar
Hedberg, L. I. and Wolff, T., ‘Thin sets in nonlinear potential theory’, Ann. Inst. Fourier (Grenoble) 33 (1983), 161187.CrossRefGoogle Scholar
Hua, B. and Li, R., ‘The existence of extremal functions for discrete Sobolev inequalities on lattice graphs’, J. Differential Equations 305 (2021), 224241.CrossRefGoogle Scholar
Huang, G., Li, C. and Yin, X., ‘Existence of the maximizing pair for the discrete Hardy–Littlewood–Sobolev inequality’, Discrete Contin. Dyn. Syst. 35 (2015), 935942.CrossRefGoogle Scholar
Jin, C. and Li, C., ‘Qualitative analysis of some systems of integral equations’, Calc. Var. Partial Differential Equations 26 (2006), 447457.CrossRefGoogle Scholar
Kawano, N., Yanagida, E. and Yotsutani, S., ‘Structure theorems for positive radial solutions to $\operatorname{div}(|{Du|}^{m-2} Du)+K(|x|){u}^q=0$ in ${\mathbb{R}}^n$ ’, J. Math. Soc. Japan 45 (1993), 719742.CrossRefGoogle Scholar
Kilpelaiinen, T. and Maly, J., ‘The Wiener test and potential estimates for quasilinear elliptic equations’, Acta Math. 172 (1994), 137161.CrossRefGoogle Scholar
Labutin, D., ‘Potential estimates for a class of fully nonlinear elliptic equations’, Duke Math. J. 111 (2002), 149.CrossRefGoogle Scholar
Lei, Y. and Li, C., ‘Sharp criteria of Liouville type for some nonlinear systems’, Discrete Contin. Dyn. Syst. 36 (2016), 32773315.CrossRefGoogle Scholar
Lei, Y., Li, C. and Ma, C., ‘Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy–Littlewood–Sobolev system’, Calc. Var. Partial Differential Equations 45 (2012), 4361.CrossRefGoogle Scholar
Lei, Y., Li, Y. and Tang, T., ‘Critical conditions and asymptotics for discrete systems of the Hardy–Littlewood–Sobolev type’, Tohoku Math. J. (2) 75 (2023), 305328.CrossRefGoogle Scholar
Lieb, E., ‘Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities’, Ann. of Math. (2) 118 (1983), 349374.CrossRefGoogle Scholar
Liu, S., ‘Regularity, symmetry, and uniqueness of some integral type quasilinear equations’, Nonlinear Anal. 71 (2009), 17961806.CrossRefGoogle Scholar
Ma, C., Chen, W. and Li, C., ‘Regularity of solutions for an integral system of Wolff typeAdv. Math. 226 (2011), 26762699.CrossRefGoogle Scholar
Phuc, N. and Verbitsky, I., ‘Quasilinear and Hessian equations of Lane–Emden type’, Ann. of Math. (2) 168 (2008), 859914.CrossRefGoogle Scholar
Serrin, J. and Zou, H., ‘Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities’, Acta Math. 189 (2002), 79142.CrossRefGoogle Scholar
Sun, S. and Lei, Y., ‘Fast decay estimates for integrable solutions of the Lane–Emden type integral systems involving the Wolff potentials’, J. Funct. Anal. 263 (2012), 38573882.CrossRefGoogle Scholar