Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-21T02:49:30.844Z Has data issue: false hasContentIssue false

On the collisional sensitivity of polarised Mg II solar lines

Published online by Cambridge University Press:  11 December 2024

M. Derouich*
Affiliation:
Astronomy and Space Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
S. Qutub
Affiliation:
Astronomy and Space Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
*
Corresponding author: M. Derouich; Emails: [email protected] & [email protected]

Abstract

Neutral and singly ionised states of the magnesium (Mg) are the origin of several spectral lines that are useful for solar diagnostic purposes. An important element in modelling such solar lines is collisional data of the Mg with different perturbers abundant in the Sun, specially with neutral hydrogen. This work aims at providing complete depolarisation and polarisation and population transfer data for Mg II due to collisions with hydrogen atoms. For this purpose, a general formalism is employed to calculate the needed rates of MgII due to collisions with hydrogen atoms. The resulting collisional rates are then employed to investigate the impact of collisions on the polarisation of 25 Mg II lines relevant to solar applications by solving the governing statistical equilibrium equations within multi-level and multi-term atomic models. We find that the polarisation of some Mg II lines starts to be sensitive to collisions for hydrogen density $n_H \!\gtrsim\!$ 10$^{14}$ cm$^{-3}$.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, C. W., & Cox, A. N. 1999, Allen’s Astrophysical quantities. New York: AIP Press.Google Scholar
Alsina Ballester, E., Belluzzi, L., & Trujillo Bueno, J. 2016, ApJL, 831, L15Google Scholar
Barklem, P. S. 1998, Ph.D. Thesis, Univ. QueenslandGoogle Scholar
Barklem, P. S., & O’Mara, B. J. 1998, MNRAS, 300, 863Google Scholar
Belluzzi, L., & Trujillo Bueno, J. 2012, ApJL, 750, L11Google Scholar
Bohlin, J. D., Frost, K. J., Burr, P. T., Guha, A. K., & Withbroe, G. L. 1980, SoPh, 65, 5Google Scholar
Calvert, J., Griner, D., Montenegro, J., et al. 1979, OptEn, 18, 287Google Scholar
Cox, A. N. 2000, Allen’s Astrophysical Quantities, 4th ed. (New York: Springer Verlag and AIP Press)Google Scholar
Derouich, M., Sahal-Bréchot, S., Barklem, P. S., & O’Mara, B. J. 2003a, A&A, 404, 763Google Scholar
Derouich, M., Sahal-Bréchot, S., & Barklem, P. S. 2003b, A&A, 409, 369Google Scholar
Derouich, M. 2004, Ph.D. Thesis, Paris VII-Denis Diderot UniversityGoogle Scholar
Derouich, M., Sahal-Bréchot, S., & Barklem, P. S. 2004, A&A, 426, 707CrossRefGoogle Scholar
Derouich, M., Sahal-Bréchot, S., & Barklem, P.S. 2005, A&A, 434, 779Google Scholar
Derouich, M., & Barklem, P.S. 2007 A&A, 462, 1171CrossRefGoogle Scholar
Derouich, M., Trujillo Bueno, J., & Manso Sainz, R. 2007, A&A, 472, 269Google Scholar
Derouich, M. 2008, A&A, 481, 845Google Scholar
Deb, C. & Derouich, M. 2014, A&A, 572, id.A53Google Scholar
del Pino Alemán, T., Casini, R., & Manso Sainz, R. 2016, ApJL, 830, L24CrossRefGoogle Scholar
del Pino Alemán, T., Trujillo Bueno, J., Casini, R., & Manso Sainz, R. 2020, ApJ, 891, 91Google Scholar
Derouich, M. 2017, NewA, 51, 32CrossRefGoogle Scholar
Derouich, M., Basurah, H., Badruddin, B. 2017, PASA, 34, id.e018 8CrossRefGoogle Scholar
Derouich, M. 2018, MNRAS, 481, 2444CrossRefGoogle Scholar
Derouich, M. 2020, MNRAS, 491, 3990Google Scholar
Henze, W., & Stenflo, J. O. 1987, SoPh, 111, 243Google Scholar
Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines, Vol. 307 (Dordrecht: Springer)Google Scholar
Leenaarts, J., Pereira, T. M. D., Carlsson, M., Uitenbroek, H., & De Pontieu, B. 2013, ApJ, 772, 89Google Scholar
Martin, W.C., & Wiese, W.L. 2002, Atomic, Molecular, and Optical Physics Handbook (version 1.01) [online], Available: http://physics.nist.gov/Pubs/AtSpec/index.htmlGoogle Scholar
Nienhuis, G. 1976, J. Phys. B: Atom. Molec. Phys. 9, 167CrossRefGoogle Scholar
Kurucz, R. L. 1973, SAO Special Report 351Google Scholar
Kurucz, R. L. 1981, SAO Special Report 390Google Scholar
Omont, A. 1977, Prog. Quantum Electronics, 5, 69Google Scholar
Thuillier, G., Floyd, L., Woods, T. N., et al. 2004, Geophys. Monogr. 141, 171Google Scholar
Woodgate, B. E., Tandberg-Hanssen, E. A., Bruner, E. C., et al. 1980, SoPh, 65, 73CrossRefGoogle Scholar
Sahal-Bréchot, S. 1977, ApJ., 213, 887CrossRefGoogle Scholar
Sahal-Bréchot, S.; Derouich, M.; Bommier, V.; Barklem, P. S. 2007, A&A, 465, 667Google Scholar