Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T07:28:40.576Z Has data issue: false hasContentIssue false

Engineering and modifying two-dimensional materials by electron beams

Published online by Cambridge University Press:  08 September 2017

Xiaoxu Zhao
Affiliation:
Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; [email protected]
Jani Kotakoski
Affiliation:
Faculty of Physics, University of Vienna, Austria; [email protected]
Jannik C. Meyer
Affiliation:
Faculty of Physics, University of Vienna, Austria; [email protected]
Eli Sutter
Affiliation:
Department of Mechanical and Materials Engineering, University of Nebraska–Lincoln, USA; [email protected]
Peter Sutter
Affiliation:
Department of Electrical and Computer Engineering, University of Nebraska–Lincoln, USA; [email protected]
Arkady V. Krasheninnikov
Affiliation:
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Germany; Department of Applied Physics, Aalto University, Finland; [email protected]
Ute Kaiser
Affiliation:
Central Facility of Electron Microscopy, Ulm University, Germany; [email protected]
Wu Zhou
Affiliation:
Electron Microscopy Laboratory, School of Physical Sciences, University of Chinese Academy of Sciences, China; [email protected]
Get access

Abstract

Electron-beam (e-beam) irradiation damage is often regarded as a severe limitation to atomic-scale study of two-dimensional (2D) materials using electron microscopy techniques. However, energy transferred from the e-beam can also provide a way to modify 2D materials via defect engineering when the interaction of the beam with the sample is precisely controlled. In this article, we discuss the atomic geometry, formation mechanism, and properties of several types of structural defects, ranging from zero-dimensional point defects to extended domains, induced by an e-beam in a few representative 2D materials, including graphene, hexagonal boron nitride, transition-metal dichalcogenides, and phosphorene. We show that atomic as well as line defects and even novel nanostructures can be created and manipulated in 2D materials by an e-beam in a controllable manner. Phase transitions can also be induced. The e-beam in a (scanning) transmission electron microscope not only resolves the intrinsic atomic structure of materials with defects, but also provides new opportunities to modify the structure with subnanometer precision.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., Nature 430, 870 (2004).CrossRefGoogle Scholar
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A., Nano Lett. 8, 3582 (2008).CrossRefGoogle Scholar
Borner, P., Kaiser, U., Lehtinen, O., Phys. Rev. B Condens. Matter 93, 134104 (2016).CrossRefGoogle Scholar
Xia, F., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P., Nat. Nanotechnol. 4, 839 (2009).CrossRefGoogle Scholar
Jin, C.H., Lin, F., Suenaga, K., Iijima, S., Phys. Rev. Lett. 102, 195505 (2009).CrossRefGoogle Scholar
Kotakoski, J., Jin, C.H., Lehtinen, O., Suenaga, K., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 82, 113404 (2010).CrossRefGoogle Scholar
Vierima, V., Krasheninnikov, A.V., Komsa, H.P., Nanoscale 8, 7949 (2016).CrossRefGoogle Scholar
Xiao, Z., Qiao, J., Lu, W., Ye, G., Chen, X., Zhang, Z., Ji, W., Li, J., Jin, C., Nano Res. 10, 2519 (2017).Google Scholar
Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y., Nat. Nanotechnol. 9, 372 (2014).CrossRefGoogle Scholar
Zhou, W., Zou, X.L., Najmaei, S., Liu, Z., Shi, Y.M., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.C., Nano Lett. 13, 2615 (2013).CrossRefGoogle Scholar
Hong, J.H., Hu, Z.X., Probert, M., Li, K., Lv, D.H., Yang, X.N., Gu, L., Mao, N.N., Feng, Q.L., Xie, L.M., Zhang, J., Wu, D.Z., Zhang, Z.Y., Jin, C.H., Ji, W., Zhang, X.X., Yuan, J., Zhang, Z., Nat. Commun. 6, 6293 (2015).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464, 571 (2010).CrossRefGoogle Scholar
Lehtinen, O., Kurasch, S., Krasheninnikov, A.V., Kaiser, U., Nat. Commun. 4, 2098 (2013).CrossRefGoogle Scholar
Kotakoski, J., Mangler, C., Meyer, J.C., Nat. Commun. 5, 3991 (2014).CrossRefGoogle Scholar
Warner, J.H., Margine, E.R., Mukai, M., Robertson, A.W., Giustino, F., Kirkland, A.I., Science 337, 209 (2012).CrossRefGoogle Scholar
Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K., Iijima, S., Nat. Nanotechnol. 2, 358 (2007).CrossRefGoogle Scholar
Krasheninnikov, A.V., Nordlund, K., J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
Banhart, F., Kotakoski, J., Krasheninnikov, A.V., ACS Nano 5, 26 (2011).CrossRefGoogle Scholar
Alem, N., Erni, R., Kisielowski, C., Rossell, M.D., Hartel, P., Jiang, B., Gannett, W., Zettl, A., Phys. Status Solidi Rapid Res. Lett. 5, 295 (2011).CrossRefGoogle Scholar
Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O., Kaiser, U., Appl. Phys. Lett. 103, 203107 (2013).CrossRefGoogle Scholar
Najmaei, S., Amani, M., Chin, M.L., Liu, Z., Birdwell, A.G., O’Regan, T.P., Ajayan, P.M., Dubey, M., Lou, J., ACS Nano 8, 7930 (2014).CrossRefGoogle Scholar
Li, H., Tsai, C., Koh, A.L., Cai, L.L., Contryman, A.W., Fragapane, A.H., Zhao, J.H., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Norskov, J.K., Zheng, X.L., Nat. Mater. 15, 48 (2016).CrossRefGoogle Scholar
Komsa, H.P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. Lett. 109, 035503 (2012).CrossRefGoogle Scholar
Komsa, H.P., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 91, 125304 (2015).CrossRefGoogle Scholar
Lehnert, T., Lehtinen, O., Algara-Siller, G., Kaiser, U., Appl. Phys. Lett. 110, 033106 (2017).Google Scholar
Kotakoski, J., Eder, F.R., Meyer, J.C., Phys. Rev. B Condens. Matter 89, 201406 (2014).CrossRefGoogle Scholar
Komsa, H.P., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 88, 035301 (2013).Google Scholar
Lin, J.H., Pantelides, S.T., Zhou, W., ACS Nano 9, 5189 (2015).CrossRefGoogle Scholar
Li, X.-M., Long, M.-Q., Cui, L.-L., Yang, K.-W., Zhang, D., Ding, J.-F., Xu, H., AIP Adv. 6, 015015 (2016).Google Scholar
Zhang, Z., Zou, X., Crespi, V.H., Yakobson, B.I., ACS Nano 7, 10475 (2013).CrossRefGoogle Scholar
Sutter, E., Huang, Y., Komsa, H.P., Ghorbani-Asl, M., Krasheninnikov, A.V., Sutter, P., Nano Lett. 16, 4410 (2016).CrossRefGoogle Scholar
Chuvilin, A., Meyer, J.C., Algara-Siller, G., Kaiser, U., New J. Phys. 11, 083019 (2009).CrossRefGoogle Scholar
Jin, C.H., Lan, H.P., Peng, L.M., Suenaga, K., Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).CrossRefGoogle Scholar
Lin, Y.C., Morishita, S., Koshino, M., Yeh, C.H., Teng, P.Y., Chiu, P.W., Sawada, H., Suenaga, K., Nano Lett. 17, 494 (2017).CrossRefGoogle Scholar
Cretu, O., Komsa, H.P., Lehtinen, O., Algara-Siller, G., Kaiser, U., Suenaga, K., Krasheninnikov, A.V., ACS Nano 8, 11950 (2014).CrossRefGoogle Scholar
Liu, X.F., Xu, T., Wu, X., Zhang, Z.H., Yu, J., Qiu, H., Hong, J.H., Jin, C.H., Li, J.X., Wang, X.R., Sun, L.T., Guo, W.L., Nat. Commun. 4, 1776 (2013).CrossRefGoogle Scholar
Lin, J.H., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K.I., Cuong, N.T., Otani, M., Okada, S., Lupini, A.R., Idrobo, J.C., Caudel, D., Burger, A., Ghimire, N.J., Yan, J.Q., Mandrus, D.G., Pennycook, S.J., Pantelides, S.T., Nat. Nanotechnol. 9, 436 (2014).CrossRefGoogle Scholar
Lin, J.H., Zhang, Y.Y., Zhou, W., Pantelides, S.T., ACS Nano 10, 2782 (2016).CrossRefGoogle Scholar
Lehtinen, O., Komsa, H.P., Pulkin, A., Whitwick, M.B., Chen, M.W., Lehnert, T., Mohn, M.J., Yazyev, O.V., Kis, A., Kaiser, U., Krasheninnikov, A.V., ACS Nano 9, 3274 (2015).CrossRefGoogle Scholar
Koh, A.L., Wang, S.S., Ataca, C., Grossman, J.C., Sinclair, R., Warner, J.H., Nano Lett. 16, 1210 (2016).CrossRefGoogle Scholar
Zhao, J., Deng, Q., Bachmatiuk, A., Sandeep, G., Popov, A., Eckert, J., Rümmeli, M.H., Science 343, 1228 (2014).CrossRefGoogle Scholar
Yin, K., Zhang, Y.Y., Zhou, Y., Sun, L., Chisholm, M.F., Pantelides, S.T., Zhou, W., 2D Mater. 4, 011001 (2017).Google Scholar
Kano, E., Kvashnin, D.G., Sakai, S., Chernozatonskii, L.A., Sorokin, P.B., Hashimoto, A., Takeguchi, M., Nanoscale 9, 3980 (2017).CrossRefGoogle Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J., Kaiser, U., Nano Lett. 9, 2683 (2009).CrossRefGoogle Scholar
Pham, T., Gibb, A.L., Li, Z.L., Gilbert, S.M., Song, C.Y., Louie, S.G., Zett, A., Nano Lett. 16, 7142 (2016).CrossRefGoogle Scholar
Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V., Kaiser, U., Phys. Rev. Lett. 110, 196102 (2013).CrossRefGoogle Scholar
Monthioux, M., Charlier, J.C., Carbon 75, 1 (2014).CrossRefGoogle Scholar
Kotakoski, J., Meyer, J.C., Kurasch, S., Santos-Cottin, D., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 83, 245420 (2011).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A.V., Kaiser, U., Meyer, J.C., Phys. Rev. Lett. 106, 105505 (2011).CrossRefGoogle Scholar
Robertson, A.W., Montanari, B., He, K., Allen, C.S., Wu, Y.A., Harrison, N.M., Kirkland, A.I., Warner, J.H., ACS Nano 7, 4495 (2013).CrossRefGoogle Scholar
Kurasch, S., Kotakoski, J., Lehtinen, O., Skakalova, V., Smet, J., Krill, C.E., Krasheninnikov, A.V., Kaiser, U., Nano Lett. 12, 3168 (2012).CrossRefGoogle Scholar
Lehtinen, O., Vats, N., Algara-Siller, G., Knyrim, P., Kaiser, U., Nano Lett. 15, 235 (2015).CrossRefGoogle Scholar
Gong, C.C., He, K., Robertson, A.W., Yoon, E., Lee, G.D., Warner, J.H., ACS Nano 9, 656 (2015).CrossRefGoogle Scholar
He, K., Robertson, A.W., Fan, Y., Allen, C.S., Lin, Y.C., Suenaga, K., Kirkland, A.I., Warner, J.H., ACS Nano 9, 4786 (2015).CrossRefGoogle Scholar
Susi, T., Kotakoski, J., Kepaptsoglou, D., Mangler, C., Lovejoy, T.C., Krivanek, O.L., Zan, R., Bangert, U., Ayala, P., Meyer, J.C., Ramasse, Q., Phys. Rev. Lett. 113, 115501 (2014).CrossRefGoogle Scholar
Susi, T., Meyer, J.C., Kotakoski, J., Ultramicroscopy 180, 163 (2017).CrossRefGoogle Scholar
Lin, Y.C., Teng, P.Y., Yeh, C.H., Koshino, M., Chiu, P.W., Suenaga, K., Nano Lett. 15, 7408 (2015).CrossRefGoogle Scholar
Lin, Y.C., Dumcenco, D.O., Komsa, H.P., Niimi, Y., Krasheninnikov, A.V., Huang, Y.S., Suenaga, K., Adv. Mater. 26, 2857 (2014).CrossRefGoogle Scholar
Lin, Y.C., Bjorkman, T., Komsa, H.P., Teng, P.Y., Yeh, C.H., Huang, F.S., Lin, K.H., Jadczak, J., Huang, Y.S., Chiu, P.W., Krasheninnikov, A.V., Suenaga, K., Nat. Commun. 6, 6736 (2015).CrossRefGoogle Scholar
Wang, S., Lee, G.D., Lee, S., Yoon, E., Warner, J.H., ACS Nano 10, 5419 (2016).CrossRefGoogle Scholar
Komsa, H.-P., Krasheninnikov, A.V., Adv. Electron. Mater. 3, 1600468 (2017).CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L., Muller, D.A., Nature 469, 389 (2011).CrossRefGoogle Scholar
Azizi, A., Zou, X., Ercius, P., Zhang, Z., Elias, A.L., Perea-Lopez, N., Stone, G., Terrones, M., Yakobson, B.I., Alem, N., Nat. Commun. 5, 4867 (2014).CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.C., Ajayan, P.M., Lou, J., Nat. Mater. 12, 754 (2013).CrossRefGoogle Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 12, 554 (2013).CrossRefGoogle Scholar
Le, D., Rahman, T.S., J. Phys. Condens. Matter 25, 312201 (2013).CrossRefGoogle Scholar
Barja, S., Wickenburg, S., Liu, Z.-F., Zhang, Y., Ryu, H., Ugeda, M.M., Hussain, Z., Shen, Z.-X., Mo, S.-K., Wong, E., Salmeron, M.B., Wang, F., Crommie, M.F., Ogletree, D.F., Neaton, J.B., Weber-Bargioni, A., Nat. Phys. 12, 751 (2016).CrossRefGoogle Scholar
Eder, F.R., Kotakoski, J., Kaiser, U., Meyer, J.C., Sci. Rep. 4, 4060 (2014).CrossRefGoogle Scholar
Huang, P.Y., Kurasch, S., Srivastava, A., Skakalova, V., Kotakoski, J., Krasheninnikov, A.V., Hovden, R., Mao, Q., Meyer, J.C., Smet, J., Muller, D.A., Kaiser, U., Nano Lett. 12, 1081 (2012).CrossRefGoogle Scholar
Zachariasen, W.H., J. Am. Chem. Soc. 54, 3841 (1932).CrossRefGoogle Scholar
Joo, W.-J., Lee, J.-H., Jang, Y., Kang, S.-G., Kwon, Y.-N., Chung, J., Lee, S., Kim, C., Kim, T.-H., Yang, C.-W., Kim, U.J., Choi, B.L., Whang, D., Hwang, S.-W., Sci. Adv. 3, e1601821 (2017).CrossRefGoogle Scholar
Westenfelder, B., Meyer, J.C., Biskupek, J., Kurasch, S., Scholz, F., Krill, C.E. III, Kaiser, U., Nano Lett. 11, 5123 (2011).CrossRefGoogle Scholar
Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H., Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 13, 1128 (2014).CrossRefGoogle Scholar
Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L., Jin, S., J. Am. Chem. Soc. 135, 10274 (2013).CrossRefGoogle Scholar
Wang, H., Lu, Z., Kong, D., Sun, J., Hymel, T.M., Cui, Y., ACS Nano 8, 4940 (2014).CrossRefGoogle Scholar
Py, M.A., Haering, R.R., Can. J. Phys. 61, 76 (1983).CrossRefGoogle Scholar
Wang, L., Xu, Z., Wang, W., Bai, X., J. Am. Chem. Soc. 136, 6693 (2014).CrossRefGoogle Scholar
Xiong, F., Wang, H., Liu, X., Sun, J., Brongersma, M., Pop, E., Cui, Y., Nano Lett. 15, 6777 (2015).CrossRefGoogle Scholar
Enyashin, A.N., Yadgarov, L., Houben, L., Popov, I., Weidenbach, M., Tenne, R., Bar-Sadan, M., Seifert, G., J. Phys. Chem. C 115, 24586 (2011).CrossRefGoogle Scholar
Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K., Nat. Nanotechnol. 9, 391 (2014).CrossRefGoogle Scholar
Amara, K.K., Chen, Y., Lin, Y.-C., Kumar, R., Okunishi, E., Suenaga, K., Quek, S.Y., Eda, G., Chem. Mater. 28, 2308 (2016).CrossRefGoogle Scholar
Gomes, L.C., Carvalho, A., Phys. Rev. B Condens. Matter 92, 085406 (2015).Google Scholar
George, J., Joseph, K.S., J. Phys. D Appl. Phys. 15, 1109 (1982).CrossRefGoogle Scholar
Huang, Y., Sutter, E., Sadowski, J.T., Cotlet, M., Monti, O.L.A., Racke, D.A., Neupane, M.R., Wickramaratne, D., Lake, R.K., Parkinson, B.A., Sutter, P., ACS Nano 8, 10743 (2014).CrossRefGoogle Scholar
Song, H.S., Li, S.L., Gao, L., Xu, Y., Ueno, K., Tang, J., Cheng, Y.B., Tsukagoshi, K., Nanoscale 5, 9666 (2013).CrossRefGoogle Scholar
Pan, T.S., De, D., Manongdo, J., Guloy, A.M., Hadjiev, V.G., Lin, Y., Peng, H.B., Appl. Phys. Lett. 103, 093108 (2013).Google Scholar
Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Brandt, R.E., Poindexter, J.R., Lee, Y.S., Sun, L., Polizzotti, A., Park, H.H., Gordon, R.G., Buonassisi, T., Adv. Mater. 26, 7488 (2014).CrossRefGoogle Scholar
Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G., Nature 508, 373 (2014).CrossRefGoogle Scholar
Zhu, H., Wang, Q., Zhang, C., Addou, R., Cho, K., Wallace, R.M., Kim, M.J., Adv. Mater. 29, 1606264 (2017).CrossRefGoogle Scholar
Cretu, O., Botello-Mendez, A.R., Janowska, I., Cuong, P.H., Charlier, J.C., Banhart, F., Nano Lett. 13, 3487 (2013).CrossRefGoogle Scholar
Murugan, P., Kumar, V., Kawazoe, Y., Ota, N., Nano Lett. 7, 2214 (2007).CrossRefGoogle Scholar
Eigler, D.M., Schweizer, E.K., Nature 344, 524 (1990).CrossRefGoogle Scholar