Introduction
The latest Ediacaran Nama assemblage (~550–539 Ma; Waggoner, Reference Waggoner2003; Boag et al., Reference Boag, Darroch and Laflamme2016) records a critical interval in the history of life on Earth, marking the transition from benthic communities dominated by the soft-bodied and enigmatic Ediacara biota to communities composed of a much higher proportion of recognizable metazoans (Darroch et al., Reference Darroch, Laflamme and Wagner2018a, Reference Darroch, Smith, Laflamme and Erwinb; Muscente et al., Reference Muscente, Boag, Bykova and Schiffbauer2018; Wood et al., Reference Wood, Liu, Bowyer, Wilby, Dunn, Kenchington, Cuthill, Mitchell and Penny2019; Schiffbauer et al., Reference Schiffbauer, Selly, Jacquet, Merz, Nelson, Strange, Cai and Smith2020). In addition to global-scale biotic turnover, this interval marks the appearance of several key evolutionary innovations, including the advent of metazoan biomineralization (Wood, Reference Wood2011; Penny et al., Reference Penny, Wood, Curtis, Bowyer, Tostevin and Hoffman2014), gregarious benthic suspension feeding (Wood and Curtis, Reference Wood and Curtis2015; Gibson et al., Reference Gibson, Rahman, Maloney, Racicot, Mocke, Laflamme and Darroch2019), macroscopic predation (Hua et al., Reference Hua, Pratt and Zhang2003), and a diversification of life habits both above and below the sediment–water interface (Jensen et al., Reference Jensen, Saylor, Gehling and Germs2000; Mángano and Buatois, Reference Mángano and Buatois2014; Buatois et al., Reference Buatois, Almond, Mángano, Jensen and Germs2018; Cribb et al., Reference Cribb, Kenchington, Koester, Gibson, Boag, Racicot, Mocke, Laflamme and Darroch2019; Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020; Tarhan et al., Reference Tarhan, Myrow, Smith, Nelson and Sadler2020). The Nama Assemblage thus records ecosystems that are transitional between the older Ediacaran “White Sea” assemblage and the subsequent Cambrian (Darroch et al., Reference Darroch, Boag, Racicot, Tweedt, Mason, Erwin and Laflamme2016; Schiffbauer et al., Reference Schiffbauer, Huntley, O'Neil, Darroch, Laflamme and Cai2016; Wood et al., Reference Wood, Liu, Bowyer, Wilby, Dunn, Kenchington, Cuthill, Mitchell and Penny2019) and likely marks the origins of the modern, animal-dominated biosphere (Darroch et al., Reference Darroch, Laflamme and Wagner2018a).
Despite intensifying research into this interval, the timing and impact of emerging metazoan behaviors is still not fully understood. The diversification of bilaterian animals in the latest Ediacaran (as represented by trace fossils) potentially had powerful ecosystem engineering impacts (Cribb et al., Reference Cribb, Kenchington, Koester, Gibson, Boag, Racicot, Mocke, Laflamme and Darroch2019) and may have played an outsized role in driving major shifts in Earth systems over the Ediacaran–Cambrian transition. These changes include the removal of seafloor microbial mats, leading to shifts in substrate rheology (termed the “agronomic revolution”; Seilacher, Reference Seilacher1999; Bottjer et al., Reference Bottjer, Hagadorn and Dornbos2000; Mángano and Buatois, Reference Mángano and Buatois2017), changes to sediment redox gradients (Rosenberg et al., Reference Rosenberg, Nilsson and Diaz2001; Canfield and Farquhar, Reference Canfield and Farquhar2009; Tarhan et al., Reference Tarhan, Droser, Planavsky and Johnston2015; van de Velde and Meysman, Reference van de Velde and Meysman2016), patterns of nutrient cycling (Bertics and Ziebis, Reference Bertics and Ziebis2009), and the volume of suspended sediment in the water column (Rhoads and Young, Reference Rhoads and Young1970). Some studies have suggested that metazoan ecosystem engineering may have driven the extinction of the Ediacara biota (Laflamme et al., Reference Laflamme, Darroch, Tweedt, Peterson and Erwin2013; Darroch et al., Reference Darroch2015), although there are currently a variety of competing models seeking to explain these intervals of biotic turnover (see, e.g., Smith et al., Reference Smith, Nelson, Strange, Eyster, Rowland, Schrag and Macdonald2016; Budd and Jensen, Reference Budd and Jensen2017; Zhang et al., Reference Zhang, Xiao, Kendall, Romaniello, Cui, Meyer, Gilleaudeau, Kaufman and Anbar2018). Trace-fossil assemblages in the latest Ediacaran, therefore, not only provide insights into rates and patterns of metazoan evolution but also allow for investigations into patterns of coupling between the biosphere and geosphere, helping to establish the extent to which biological activity may have structured the animal-dominated ecosystems that characterize the Phanerozoic. Here, we describe the trace- and body-fossil diversity of the late Ediacaran Nasep and Huns members (Urusis Formation) from the Nama Group, southern Namibia, alongside an assessment of their paleoenvironmental context. These sections preserve the oldest reported treptichnid traces (and thus the earliest evidence for “complex” burrowing; Jensen et al., Reference Jensen, Saylor, Gehling and Germs2000) yet found within the Ediacaran. Detailed investigation of the trace- and body-fossil composition of the Nasep–Huns transition in their sedimentological and stratigraphic context thus provides a window into the composition and functioning of late Ediacaran ecosystems and offers an opportunity to study potential controls on the emergence of complex animal behaviors.
Geologic setting
The Nama Group of southern Namibia records >3,000 m of Ediacaran–Cambrian mixed carbonate–siliciclastic sediments over an area of approximately 125,000 km2 (Saylor et al., Reference Saylor, Grotzinger and Germs1995). These successions are thought to represent material derived from the Kalahari Craton and later sourced from the uplift associated with the Damara Orogen, deposited in a foreland basin formed in response to orogenic activity during the assembly of Gondwana (Germs, Reference Germs1983; Stanistreet et al., Reference Stanistreet, Kukla and Henry1991; Saylor et al., Reference Saylor, Grotzinger and Germs1995; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008).
The Nama Group south of Windhoek is divided into two sub-basins, the Zaris (north) and Witputs (south), which are separated by the Osis Arch, interpreted as a paleotopographic high (Germs, Reference Germs1983; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008; Fig. 1). The Nama exposures in both sub-basins are subdivided into three subgroups; in ascending stratigraphic order, these are the Kuibis, the Schwarzrand, and the Fish River. Sediments in both basins can broadly be split into two sedimentary successions, a siliciclastic–carbonate succession comprising the Kuibis Subgroup, and a broadly siliciclastic succession comprising the Schwarzrand Subgroup (including the Nomtsas and Vergesig formations) (Germs, Reference Germs1983; Saylor et al., Reference Saylor, Grotzinger and Germs1995; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). The Schwarzrand Subgroup encompasses the Ediacaran–Cambrian boundary, with the upper Ediacaran units (Nudaus and Urusis formations) locally incised by the Nomtsas Formation, which contains abundant Treptichnus pedum Seilacher, Reference Seilacher, Schindewolf and Seilacher1955 and is thus identified as Cambrian (Wilson et al., Reference Wilson, Grotzinger, Fischer, Hand, Jensen, Knoll, Abelson, Metz, McLoughlin, Cohen and Tice2012). As such, the Ediacaran–Cambrian boundary is generally thought to lie stratigraphically between the Urusis and the Nomtsas (Narbonne et al., Reference Narbonne, Saylor and Grotzinger1997; Wilson et al., Reference Wilson, Grotzinger, Fischer, Hand, Jensen, Knoll, Abelson, Metz, McLoughlin, Cohen and Tice2012); however, some have placed the boundary further down within the upper Spitskop Member (uppermost Urusis; see Linnemann et al., Reference Linnemann2019). Ash beds dating from strata below the latest-known occurrence of Ediacaran macrofossils and at Farm Swartpunt have yielded ages of 540.095 ± 0.099 Ma and 538.99 ± 0.21 Ma (Linnemann et al., Reference Linnemann2019), which suggests the Ediacaran–Cambrian boundary falls somewhere between 538 and 539 Ma. In the northern Zaris sub-basin, the Urusis Formation is thinner and consists of fluvial to shallow marine sandstone and green shale facies (Saylor, Reference Saylor2003). In the southern Witputs sub-basin, the Urusis Formation grades seaward into a carbonate shelf divided chronologically into the Nasep, Huns, Feldschuhhorn, and Spitskop members (Saylor, Reference Saylor2003; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). The Urusis Formation varies in thickness throughout the Witputs sub-basin, reaching a maximum thickness of 1,000 m near the Gariep Belt and thinning to less than 200 m proximal to the Osis Ridge (Saylor, Reference Saylor2003).
Nasep Member
The Nasep is composed primarily of medium-grained, well-sorted sandstone (Germs, Reference Germs1983; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008) and represents the base of the second depositional sequence within the Schwarzrand Subgroup (S2 of Germs, Reference Germs1983; Saylor et al., Reference Saylor, Grotzinger and Germs1995; Sequence A of Saylor, Reference Saylor2003) overlying an erosional contact incising the underlying shale. Saylor et al., (Reference Saylor, Grotzinger and Germs1995) recognized five facies within the Nasep Member that represent a variety of wave-dominated and delta-influenced settings, although a relative paucity of sedimentary structures in its lower sections makes precise paleoenvironmental reconstruction difficult (Saylor et al., Reference Saylor, Grotzinger and Germs1995). The section begins in the basal Nasep with ~43 m of massive- to planar-bedded medium-grained, well-sorted sandstone (Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). This transitions into 5–15 m of hummocky cross-stratified gray-green sandstone that Saylor et al. (Reference Saylor, Grotzinger and Germs1995) suggest marks a transition from strong current-borne sediment deposition during shoreline regression to a deeper-water, storm-dominated transgressive environment as sea level rose. The subsequent unit, a thin- to medium-bedded calcarenite with varying degrees of trough and tabular cross-bedding, indicates a shallower, shoreface environment, which is then followed by a green shale unit. The absence of major wave-generated sedimentary structures in the green shale suggests the furthest offshore deposition observed in this unit occurred at or immediately below fair-weather wave base (Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). The uppermost unit consists of thick-bedded sandstone with well-developed planar bedding, large-scale westerly directed trough and tabular cross beds, and soft sediment slumping typical of a delta slope (Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). In more landward sections, however, the Nasep Member terminates with a unit composed entirely of progradational, unidirectional cross-bedded sandstone, indicating a coastal plain depositional environment less influenced by reversing currents, possibly caused by increased fluvial or ebb-tide influence (Saylor, Reference Saylor2003).
Huns Member
Unconformably overlying the Nasep Member is the erosive-based Huns Member, which marks the transition into the upper Schwarzrand Subgroup (Saylor and Grotzinger, Reference Saylor and Grotzinger1996) and the base of another sequence boundary (S3 of Germs, Reference Germs1983; Saylor et al., Reference Saylor, Grotzinger and Germs1995; Sequence B of Saylor, Reference Saylor2003). In the east, the Huns cuts down into the Nasep and forms an erosional boundary; however, the erosion depth decreases westward, and the western portions of the Nasep–Huns boundary present no evidence of erosion (Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). The Huns is thought to represent a storm-dominated carbonate ramp succession in the latest stages of the Ediacaran and is roughly divisible into three subsections (inner ramp, ramp crest, ramp-to-basin transition) that fall along an east-to-west transect (Saylor et al., Reference Saylor, Grotzinger and Germs1995; Saylor, Reference Saylor2003; Grotzinger and Miller, Reference Grotzinger, Miller and Miller2008). The lower Huns (0–40 m) is marked by shale with limestone and sandstone interbedding, followed by meter-scale stromatolitic units and small patch reefs upward through the remaining ~260 m of the section (Saylor and Grotzinger, Reference Saylor and Grotzinger1996; Saylor, Reference Saylor2003). At maximum extent, the Huns can reach thicknesses of up to 500 m, although the unit-wide average is likely closer to 300 m (Saylor and Grotzinger, Reference Saylor and Grotzinger1996; Grotzinger et al., Reference Grotzinger, Watters and Knoll2000). The platform is capped by pinnacle reefs composed of a thrombolitic core enveloped by stromatolitic outer layers that indicate further submergence (drowning) of the carbonate platform before the deposition of the overlying Feldschuhorn shale (Saylor and Grotzinger, Reference Saylor and Grotzinger1996; Grotzinger et al., Reference Grotzinger, Adams and Schröder2005).
Materials and methods
Repository and institutional abbreviation
Illustrated specimens were examined and photographed in the field; the majority were left in place. The slabs preserving the putative priapulid traces and Corumbella are reposited at the Geological Survey of Namibia (GSN) in Windhoek, Namibia.
Study localities and sedimentology
Two localities in the Witputs sub-basin, Canyon Roadhouse and Farm Arimas, expose the Nasep–Huns transition in wide lateral extent (Fig. 1.3). The Canyon Roadhouse exposures (27°31′16.5″S, 17°48′43.4″E) are located approximately 25 km northeast of the Fish River Canyon (FRC) and immediately adjacent to the Gondwana Collection Canyon Roadhouse Lodge. Farm Arimas (27°41′36.1″S, 17°1′50.5″E) is approximately 55 km west of the central portion of the FRC.
At Canyon Roadhouse, the lowest Nasep exposures begin with 0.5 m of recrystallized limestone with mudstone chip inclusions (Fig. 2). This is immediately followed by 1.5 m of coarse-grained sandstone, which bears lithological and textural similarities to Ernietta Pflug, Reference Pflug1966 horizons found at localities such as Farm Hansburg (see Bouougri et al., Reference Bouougri, Porada, Weber and Reitner2011; Gibson et al., Reference Gibson, Rahman, Maloney, Racicot, Mocke, Laflamme and Darroch2019; Maloney et al., Reference Maloney, Boag, Facciol, Gibson, Cribb, Koester, Kenchington, Racicot, Darroch and Laflamme2020); however, these beds have yet to yield any Ediacaran body fossils. These successions fine upward over 2 m into a medium-grained sandstone with small pebble-sized clasts and are capped with a thin layer of fine-grained sand. Another fining-upward interval occurs from 6 to 9 m, recording 20 cm beds of thick, coarse-grained sandstone interbedded with ~30 cm layers of fine-grained sandstone with oscillation ripples (Fig. 3.4). The Nasep–Huns boundary likely falls somewhere in the intermediate ~6 m of nonexposure as the next outcrops appear at ~15 m and consist of >2 m layers of interbedded mudchip-dominated limestone and micaceous fine-grained, silty sandstone, some containing coarser-grained sand. There is no exposure from 27 to 35 m, where ~4 m of weathered black limestone outcrops. After a thin >1 m interval of the same carbonate material with sandy inclusions at 43 m, the section resumes at 50 m with the characteristic weathered Huns carbonate before ceasing at approximately 56 m.
The Nasep–Huns transition at Farm Arimas is more extensive than its counterpart at Canyon Roadhouse, with approximately 96 m of vertical exposure (Fig. 4). The uppermost Nasep constitutes the lower 15 m of the section and is composed of reddish-brown medium-grained sandstone with intermittent oscillation ripples and channelization, as well as meiofaunal traces. The Nasep–Huns boundary is presumed to fall within the successive 10 m of nonexposure as the next exposure (at approximately 25 m) indicates a transition into the characteristic Huns limestone. The next 30 m alternate between <2 m thick exposures of Nasep-type sandstone and more extensive 3–5 m exposures of weathered, sandy, black limestone with ~25 cm thick beds and small-scale laminations. A thrombolite horizon within the bedded limestone appears around 56 m, and the nonthrombolitic sandy limestone continues upward in massive, meter-scale blocks until approximately 68 m. This is succeeded by a 15 m interval of nonexposure, which is capped by approximately 13 m of the massive limestone.
The interval of nonexposure at Farm Arimas from 47 to 56 m is of particular taphonomic interest. Judging from material found in nearby float, these fine-grained sandstone horizons preserve a variety of microbially induced sedimentary structures as well as abundant gutter casts, which preserve a variety of scour-related and biogenic structures on their lower surfaces (Fig. 5.2; see also Jensen et al., Reference Jensen, Saylor, Gehling and Germs2000; Buatois and Mángano, Reference Buatois, Mángano, Mángano and Buatois2016). The gutter cast horizons (located at ~48 and ~70 m in the section measured at Farm Arimas and at ~20 m in the section measured at Canyon Roadhouse) are observed in the fine-grained siliciclastics of the uppermost Nasep/lowermost Huns. These structures can be indicative of sediment by-pass resulting in small-scale (5–10 cm in width) downslope flows (see Mángano et al., Reference Mángano, Buatois, West and Maples2002) and are a common source of trace fossils across the Nasep–Huns transition. Comparatively high trace-fossil diversity (multiple ichnotaxa indicating a range of tracemaker behaviors) is present on the underside of the gutter casts sourced from fossil horizons at Farm Arimas and Canyon Roadhouse; by contrast, nongutter casts tend to preserve the majority of body fossils in these intervals.
Microbially induced sedimentary structures
A number of microbially induced sedimentary structures (MISSs) are present across the Nasep–Huns transition, including Kinneyia and Intrites. These structures are thought to form due to sediment deformation under the microbial mats that blanketed large swathes of the seafloor during the late Ediacaran (Bouougri and Porada, Reference Bouougri and Porada2007; although see Pratt, Reference Pratt2021 for an alternative mechanism of Kinneyia formation). First described by Walcott (Reference Walcott1914), Kinneyia (Fig. 6.1, 6.3) is characterized by linear to slightly curved crests separated by highly variable (0.2–2 cm) distances (Porada et al., Reference Porada, Ghergut and Bouougri2008). Crests are approximately 1–2 mm wide, and the transitions into the intra-crest round-bottomed troughs is extremely steep. These structures occur on upper bedding surfaces, primarily in sandstone or shale. Kinneyia structures appear most commonly between the Neoproterozoic and Ordovician, although similar structures have been found as early as the Archean and possibly as late as the Neogene (Hagadorn and Bottjer, Reference Hagadorn and Bottjer1997; Noffke et al., Reference Noffke, Hazen and Nhieko2003; Carmona et al., Reference Carmona, Ponce, Wetzel, Bournod and Cuadrado2012). Proposed mechanisms of formation for Kinneyia center on unstable sediments beneath the original microbial mat, although the causal forces (e.g., shear-induced mat instability, oscillation of microbial aggregates, liquefied substrate) remain debated (Porada et al., Reference Porada, Ghergut and Bouougri2008; Thomas et al., Reference Thomas, Herminghaus, Porada and Goehring2013; Herminghaus et al., Reference Herminghaus, Thomas, Aliaskarisohi, Porada and Goehring2016). By contrast, experimental work by Mariotti et al. (Reference Mariotti, Pruss, Perron and Bosak2014) suggests that Kinneyia-type structures instead indicate the absence of an overlying mat, arguing the characteristic crest–trough form derives from wave-induced movement of microbial agglomerations at an exposed sediment–water interface.
Originally interpreted as a body fossil, Intrites (Fig. 6.4) was redescribed by Menon et al. (Reference Menon, McIlroy and Brasier2017) as a fine-grained “sediment volcano” or fluid escape structure that forms as a result of small-scale tears in the overlying microbial mats. As material buildup progressed around the ejecta site, cyanobacteria were likely attracted to the potential for increased access to light on the raised structure; thus, the repeated sediment–biofilm–sediment accretion cycle may have produced microstromatolites in the characteristic Intrites torus form (Gerdes et al., Reference Gerdes, Krumbein, Reineck, Krumbein, Paterson and Stal1994).
Trace-fossil diversity of the Nasep–Huns transition
The first account of ichnofossils in the Nama was published by Germs (Reference Germs1972), who documented five types of vermiform traces in the Nasep (although Archaeichium Glaessner, Reference Glaessner1963 has since been revised to represent a body fossil; see Glaessner, Reference Glaessner1978). Geyer and Uchman, (Reference Geyer, Uchman, Geyer and Landing1995) reported a number of ichnogenera from the Nasep, including Torrowangea rosei Webby, Reference Webby1970, cf. Trichophycus pedum, two ichnospecies of Palaeophycus Hall, Reference Hall1847, and three ichnospecies of Planolites Nicholson, Reference Nicholson1873 (including cf. P. montanus Richter, Reference Richter1927), in addition to Skolithos Haldeman, Reference Haldeman1840, Brooksella Walcott, Reference Walcott1896, Curvolithus Fritsch, Reference Fritsch1908, and Didymaulichnus Young, Reference Young1972 noted in earlier accounts by Germs (Reference Germs1983) and Crimes and Germs (Reference Crimes and Germs1982). Geyer and Uchman (Reference Geyer, Uchman, Geyer and Landing1995) also described two morphotypes of Skolithos from the Nasep and Huns, a trace historically associated with the Cambrian onward (Mángano and Buatois, Reference Mángano and Buatois2014). If accurate, this would indicate vertical burrowing was occurring far earlier than previously thought, although we note Jensen (Reference Jensen2003) questioned these identifications, instead suggesting they more likely represent body fossils with some part of the organism rooted in the sediment. Jensen et al. (Reference Jensen, Saylor, Gehling and Germs2000) focused exclusively on trace fossils from the Nasep–Huns transition, noting the presence of treptichnids, “small trace fossils,” as well as the body fossils Nasepia Germs, Reference Germs1973, Archaeichnium, and “annulate tubes.”
The primary trace fossils found within Nasep and Huns exposures at Farm Arimas and Canyon Roadhouse represent simple, horizontal vermiform pascichnia or fodinichnia, although there are a number of morphologically distinct forms present under this greater classification (Archaeonassa Fenton and Fenton, Reference Fenton and Fenton1937, Gordia Emmons, Reference Emmons1844, Helminthoidichnites Fitch, Reference Fitch1850, and Helminthopsis Heer, Reference Heer1877; see Fig. 7.1, 7.3, 7.5, 7.6). Also present to a lesser extent are actively filled horizontal forms (Torrowangea; see Fig. 7.4), horizontal burrows with vertical components (treptichnids; see Fig. 7.2), and irregular meiofaunal networks (Fig. 8). These ichnogenera will be described in greater detail in the following.
Archaeonassa are described as convex furrows separated by a midline groove, 1–7 mm in width and often preserved in positive epirelief (Fig 7.1; also see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, fig. 9g). Traces are commonly straight to mildly sinuous and are thought to represent pascichnia attributable to a range of invertebrate taxa (Yochelson and Fedonkin, Reference Yochelson and Fedonkin1997). In their original description, Fenton and Fenton (Reference Fenton and Fenton1937) suggested a gastropod origin for Archaeonassa (although this was contested by Yochelson and Fedonkin, Reference Yochelson and Fedonkin1997); Buckman (Reference Buckman1994) later posited potential attribution to echinoderms or arthropods. However, neoichnological work by Matz et al. (Reference Matz, Frank, Marshall, Widder and Johnsen2008) found similar bilobate traces could plausibly be left by nonbilaterian giant protists such as Gromia. Archaeonassa found in late Ediacaran strata from Ukraine suggest a degree of undulation in and out of sediment underneath microbial mats, as well as general movement perpendicular to the paleoshoreline and parallel to tides, potentially indicating very early taxis (Uchman and Martyshyn, Reference Uchman and Martyshyn2020). Archaeonassa is present at both Canyon Roadhouse and Farm Arimas despite being noticeably rarer than at Farm Haruchas (basal Vingerbreek Member, Nudaus Formation, lower Schwarzrand Subgroup; see Bouougri and Porada, Reference Bouougri and Porada2007).
Gordia (Fig. 7.6; also see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, fig. 9d) is composed of nonbranching traces displaying a high degree of self-crossing, a criterion used to differentiate it from the morphologically similar Helminthoidichnites and Helminthopsis (Getty et al., Reference Getty, Sproule, Stimson and Lyons2017). Gordia is most frequently interpreted as unspecialized infaunal pascichnia of annelids or priapulids (Buatois et al., Reference Buatois, Mángano, Maples and Lanier1998; Wang et al., Reference Wang, Lin, Zhao and Orr2009). Occasional abrupt terminal segments (“pustules”) suggest a movement of a proboscid frontal organ into the vertically adjacent sediment, which could indicate priapulid affinities (Wang et al., Reference Wang, Lin, Zhao and Orr2009). Gordia is most typically found in gutter casts from the uppermost Nasep/lowermost Huns but is scarce outside of these structures. A number of the basal Huns specimens record the aforementioned pustules, indicating the tracemakers possessed a degree of vertical movement capabilities.
Helminthoidichnites represents nonmeandering, straight to curved horizontal traces 1–10 mm wide, most typically interpreted as pascichnia and attributed to nematomorphs (Buatois et al., Reference Buatois, Mángano, Maples and Lanier1998; Schlirf et al., Reference Schlirf, Uchman and Kümmel2001; Fig. 7.3). Specimens are generally preserved in negative epirelief or positive hyporelief (Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020). Individuals of Helminthoidichnites exhibit overcrossing between individuals, and some degree of “looping” is observed; however, computer simulations have demonstrated these loops exhibit greater randomness than do those of Gordia (Hofmann, Reference Hofmann1990). Helminthoidichnites is abundant across the Nasep–Huns transition and is most often found on the underside of gutter casts in concert with other vermiform traces.
In contrast to Helminthoidichnites, Helminthopsis (Fig. 7.5; also see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, fig. 7b) are nonlooping horizontal trails 1–10 mm wide interpreted as unspecialized fodinichnia and most often preserved in negative epirelief or positive hyporelief (Hofmann and Patel, Reference Hofmann and Patel1989). Traces are winding to meandering and do not touch or self-cross (Fillion and Pickerill, Reference Fillion and Pickerill1990). Individuals are typically preserved in negative epirelief. The presence of marginal ridges suggests the trails were formed by displacement of sediment by the tracemakers and that these structures remained open for a time post passage (Jensen et al., Reference Jensen, Droser, Gehling, Xiao and Kaufman2006). Helminthopsis, together with Helminthoidichnites, represent the most abundant traces found at Canyon Roadhouse and Farm Arimas. As with many of the vermiform traces present at these sites, this ichnotaxon is largely confined to preservation within the gutter cast communities from ~70 m at Farm Arimas and ~20 m at Canyon Roadhouse.
Torrowangea is the sole example of actively filled burrows from the Nasep–Huns (Fig. 7.4; also see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, fig. 9e). This ichnogenus is composed of transversely annulated, meandering to sinuous horizontal burrows characterized by intermittent constrictions thought to indicate a degree of peristaltic motion (Narbonne and Aitken, Reference Narbonne and Aitken1990; Kim and Pickerill, Reference Kim and Pickerill2003; Jensen et al., Reference Jensen, Droser, Gehling, Xiao and Kaufman2006). Specimens are always preserved in positive epirelief, and backfill has the same sedimentary composition as the surrounding matrix. Torrowangea is most often interpreted as a vermiform deposit feeder burrowing below the sediment–water interface (Buatois and Mángano, Reference Buatois, Mángano, Mángano and Buatois2016); however, some studies demonstrate the formation of structurally similar traces by benthic foraminiferal pseudopoda (Severin et al., Reference Severin, Culver and Blanpied1982; Kitazato, Reference Kitazato1988). Torrowangea is present at both Farm Arimas and Canyon Roadhouse and typically presents as 3–5 mm wide burrow structures interweaving to form a greater tangled structure. Individual burrows are meandering and characterized by sporadic constrictions, which provide for differentiation from the visually similar Archaeichnium. Torrowangea is found at the gutter cast horizons, although it is not typically associated with the vermiform trace-dominated gutter cast communities. Instead, it typically forms monospecific occurrences.
Treptichnids are an informal grouping of serial vertically penetrating burrows; in the Nasep–Huns, these are represented by discrete ovoid probes typically ~1–3 mm long that follow a curvilinear to semicircular pathway and are characteristically preserved in positive hyporelief (Fig 7.2; also see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, fig. 13a, b). The first report of these traces from the Nasep (Germs, Reference Germs1972) details parallel-ridged trails ~3 mm wide that terminate and reappear at regular intervals. Jensen et al. (Reference Jensen, Saylor, Gehling and Germs2000) later identified these traces as Treptichnus isp., noting their morphological similarities to Treptichnus pedum, albeit at a far smaller scale and with greater unidirectional probe tendencies. This suggests the treptichnids (determined by Jensen et al., Reference Jensen, Saylor, Gehling and Germs2000 to be from the Huns rather than the Nasep originally documented by Germs) likely represent more “advanced” bilaterian behavior below the Cambrian boundary (Jensen et al., Reference Jensen, Saylor, Gehling and Germs2000). Treptichnid specimens are found in both the uppermost Nasep and basal Huns at Canyon Roadhouse and Farm Arimas; at both sites, these traces are preserved as part of the larger gutter cast ichnofossil assemblages but are much smaller relative to the other traces.
Meiofaunal networks from this interval are high-density assemblages composed of millimeter-scale horizontal trace fossils 0.3–0.5 mm wide and exhibiting a high degree of overcrossing (Fig. 8). First described by Germs (Reference Germs1972) as “thread-like trails” from the Nasep of Farm Arimas, these traces are often found in conjunction with treptichnids and other vermiform burrowers. Individual traces over- or undercross but do not pass through each other. Some specimens exhibit slight vertical movement in and out of the horizontal plane similar in character to Yichnus levis (Xiao et al., Reference Xiao, Chen, Zhou and Yuan2019) from the terminal Ediacaran Shibantan member of China, although at a much smaller scale. Traces of similar appearance to those figured by Germs (Reference Germs1972) are found in the upper Nasep and lower Huns at both Farm Arimas and Canyon Roadhouse, where they are most commonly preserved within the greater gutter cast trace assemblage and exhibit occasional instances of dichotomous branching (Fig. 8.2, 8.3). Further inspection of these specimens suggests morphological differences between these traces (“Form A” as described by Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020) and those found in the terminal Ediacaran Spitskop Member (“Form B” from Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020, frequently displaying right-angle branching and regular movement above and below the sediment surface), indicating the possibility of two distinct meiofaunal behaviors within the Urusis Formation.
Of note from Arimas is an indeterminate trace fossil (GSN F1643; Fig. 9) composed of meandering 1–3 cm (length) tubes that intertwine to create a larger, braided form. Tubes are 2–3 mm wide, with longitudinal striations ~0.4 mm apart present toward the distal ends. A number of specimens display a shift from the grooved pattern into faint transverse annulations in the medial portion (see Fig. 9.4, 9.6). In multiple instances, tubes appear to dip below the sediment surface and reemerge consistent with the direction of motion, suggesting a degree of bioturbative activity (see Fig. 9.5, 9.6). Structures terminate with minimal evidence of tapering, and some appear to exhibit Gordia-type probing “nubs.” A number of individual tubes are capped by a slightly wider, rounded structure, producing a bulbous effect. This trace material is present on a single slab composed of multiple individuals from Farm Arimas. The horizon lies in the upper portions of Huns exposure (a few meters above the gutter cast/trace horizon at ~70 m) and are likely also the source of Corumbella body fossils described in the next section.
These striated traces are similar to the material described by Glaessner (Reference Glaessner1963) as Archaeichnium haughtoni. While originally classified as a trace, Glaessner (Reference Glaessner1978) later revised his assessment of Archaeichnium to that of a body fossil, although he noted definitive assignment to either one of these categories is difficult. Traces exhibiting similar flexible collapse have been described from the Cambrian of Sweden (see Jensen, Reference Jensen1997, fig. 49). In addition, both the individual tubes and the greater braided mass of the Huns material bear noticeable similarities to priapulid trace material described from the lower Cambrian of Sweden by Kesidis et al. (Reference Kesidis, Slater, Jensen and Budd2019).
The longitudinal striations are consistent (both in approximate size and placement) with sensory papillae ridges (scalids) present on the proboscides of extant scalidophoran priapulids such as Priapulus caudatus Lamarck, Reference Lamarck1816 (see Hammond, Reference Hammond1970a, Reference Hammondb, fig. 1). These grooves remain equidistant throughout the anterior portion of the probes. However, as this material is preserved in positive semirelief, assessment of the full number of striations is difficult.
The materials recovered by our group also exhibit two distinct surface patterns that support scalidophoran affinities: a striated, bulbous distal portion that transitions into a transversely annulated proximal section. Modern priapulids move through sediment by evagination of the frontal introvert (see Calloway, Reference Calloway1975, fig. 1), followed by peristaltic contractions that shorten the annulated trunk. As the peristaltic wave reaches the posterior praesoma, the introvert retracts and the body shifts into the now-vacated anterior space (see Elder and Hunter, Reference Elder and Hunter1980, table 1 and fig. 1). Neoichnological experiments by Kesidis et al. (Reference Kesidis, Slater, Jensen and Budd2019) demonstrated that this method of locomotion results in dual-patterned burrows strikingly similar to the specimens described here. In addition, while the burrows of larger priapulids such as P. caudatus tend to close immediately post passage, smaller species (e.g., Halicryptus spinulosus von Siebold, Reference von Siebold1849) can leave smaller open structures behind, which likely provide greater preservation potential as sediment is infilled (Powilleit et al., Reference Powilleit, Kitlar and Graf1994); however, the presence of microbial mats may affect this taphonomic paradigm (see Yallop et al., Reference Yallop, De Winder, Paterson and Stal1994). This preservational tendency toward smaller burrows is consistent with the specimens collected for this study, which are smaller in both length and width than the exceptionally preserved material described by Kesidis et al. (Reference Kesidis, Slater, Jensen and Budd2019).
The horizontality and slight penetrative behavior of the traces are also consistent with some accounts of priapulid burrowing behavior investigated under laboratory settings. Experiments by Vannier et al. (Reference Vannier, Calandra, Gaillard and Zylińska2010) demonstrated that when constrained to a single horizontal plane, P. caudatus will produce burrow traces morphologically similar to the material described here (see Vannier et al., Reference Vannier, Calandra, Gaillard and Zylińska2010, fig. 1D). However, their imposed vertical restrictions are largely artificial and do not reflect the natural environment of priapulids, which also display tendencies to burrow vertically. As such, our interpretations should be viewed cautiously.
Body fossils
While this study is focused primarily on the ichnofauna of the Nasep–Huns transition, there are also body fossils preserved in the sections that provide important supplementary evidence as to the temporal placement of the units and the suite of ecologies present.
Corumbella Hahn et al., Reference Hahn, Hahn, Leonardos, Pflug and Walde1982 is described as an annulated tubular structure of length up to ~80 mm and diameter up to 25 mm extending from a basal aboral region (often found extending into the substrate) into an oral region (Babcock et al., Reference Babcock, Grunow, Sadowski and Leslie2005; Pacheco et al., Reference Pacheco, Galante, Rodrigues, Leme, Bidola, Hagadorn, Stockmar, Herzen, Rudnitzki, Pfeiffer and Marques2015). Tubes possess fourfold radial symmetry and suggest a high degree of flexibility. Hagadorn and Waggoner (Reference Hagadorn and Waggoner2000) described a second form of the genus from the Great Basin of the western United States, termed Corumbella new species A, which exhibits a helical twist and lacks the secondary branched polypar of the specimens originally described by Hahn et al. (Reference Hahn, Hahn, Leonardos, Pflug and Walde1982). However, Babcock et al. (Reference Babcock, Grunow, Sadowski and Leslie2005) noted the presence of a similar helical twist in C. werneri Hahn et al., Reference Hahn, Hahn, Leonardos, Pflug and Walde1982 specimens from Brazil, and thus suggested it may in fact bear no taxonomic significance. While members of the genus are most often interpreted as scyphozoan cnidarians, recent work by Walde et al. (Reference Walde, Weber, Erdtmann and Steiner2019) has suggested Corumbella might instead represent calcareous sinotubulitids.
The Corumbella specimens (GSN F1644; Fig. 10) recovered by our group from the Huns represent the first-known occurrence of the genus from Namibia. These individuals are preserved on a single upper-Huns (~73 m) slab from Farm Arimas, with some exhibiting a degree of lateral flexibility consistent with corumbellids from other Ediacaran sites (see, e.g., Hagadorn and Waggoner, Reference Hagadorn and Waggoner2000, figs. 5.4–5.5; Pacheco et al., Reference Pacheco, Galante, Rodrigues, Leme, Bidola, Hagadorn, Stockmar, Herzen, Rudnitzki, Pfeiffer and Marques2015, fig. 4; Vaziri et al., Reference Vaziri, Majidifard, Darroch and Laflamme2021, fig. 2). Septa are clearly visible and form ~0.5 mm rings with defined midlines; neither the oral nor aboral regions appear preserved for any individual. As such, assignment to either C. werneri or a separate species is difficult; the lack of clearly defined torsion in the Huns specimens would suggest affinity with C. werneri, but the limited extent of the preserved individuals prevents assessment as to the presence/absence of the second polypar.
A suite of tubular body fossils 1–5 mm in diameter displaying a high degree of morphological variability is found throughout the study area (Fig. 11). Specimens similar to this type have historically been assigned to Archaeichnium; however, this singular taxonomic designation likely obscures the breadth of tubular morphological diversity present across the Nasep–Huns.
Unlike the possible priapulid trace material, these tubular body fossils do not possess longitudinal striations and are instead characterized by transverse annulations spaced approximately 1 mm apart (Hagadorn and Waggoner, Reference Hagadorn and Waggoner2000). These structures are thought to be flexible due to lack of clean breaks, and the body orientations suggest current alignment. Tentative interpretations suggest similarities to other late Ediacaran tubular metazoans (cf. Droser and Gehling, Reference Droser and Gehling2008; Cai et al., Reference Cai, Schiffbauer, Hua and Xiao2011; Cortijo et al., Reference Cortijo, Cai, Hua, Schiffbauer and Xiao2015; Smith et al., Reference Smith, Nelson, Strange, Eyster, Rowland, Schrag and Macdonald2016; Schiffbauer et al., Reference Schiffbauer, Selly, Jacquet, Merz, Nelson, Strange, Cai and Smith2020). A number of individuals possess conical terminal tapers, and diagnoses are reliant on the presence of these tapered ends. As such, due to the number of annulated and tubular metazoan taxa associated with the Nama Group, identification can be more difficult when the conical tapers are absent. Other tubular taxa present across this interval include “kinked-funnel” structures and stacked cone-in-cone forms that bear similarities to the “cloudinomorph” form grouping described by Selly et al. (Reference Selly2020). Further systematic work is needed to address the breadth of tubular morphological disparity across the Nasep–Huns transition.
Discussion
Detailed investigations of the Nasep–Huns transition at Canyon Roadhouse and Farm Arimas confirm this interval preserves among the highest diversity of trace fossils known from latest Ediacaran-aged sediments anywhere (see Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020). Moreover, the presence of the terminal Ediacaran index fossil Corumbella in these sections bolsters biostratigraphic links between Brazil, Paraguay, Iran, the southwestern United States, and Namibia (Hagadorn and Waggoner, Reference Hagadorn and Waggoner2000; Babcock et al., Reference Babcock, Grunow, Sadowski and Leslie2005; Warren et al., Reference Warren, Fairchild, Gaucher, Boggiani, Poiré, Anelli and Inchausti2011; Vaziri et al., Reference Vaziri, Majidifard and Laflamme2018). We first discuss the composition of fossil communities, followed by paleoenvironmental reconstruction and potential controls on trace-fossil preservation.
Fossil communities
The Nasep–Huns transition preserves a varied suite of trace and body fossils from a shallow marine environment that was at least intermittently colonized by seafloor microbial mats. These ichnofossil communities, comprising Archaeonassa, Helminthopsis, Helminthoidichnites, Gordia, Torrowangea, sub-centimeter-scale treptichnids, and meiofaunal burrow systems represent a trace-fossil assemblage that is either of comparable diversity to, or significantly more diverse than, those described from other late Ediacaran localities worldwide (Narbonne and Aitken, Reference Narbonne and Aitken1990; Weber et al., Reference Weber, Steiner and Zhu2007; Högström et al., Reference Högström, Jensen, Palacios and Ebbestad2013; Parry et al., Reference Parry, Boggiani, Condon, Garwood, Leme, McIlroy, Brasier, Trindade, Campanha, Pacheco, Diniz and Liu2017; Tarhan et al., Reference Tarhan, Myrow, Smith, Nelson and Sadler2020). Material from the upper Nasep/lower Huns is further notable for its relatively high intraslab trace diversity, including a number of ichnotaxa in direct association with each other (Fig. 5.2). In terms of behavioral complexity, several ichnotaxa (Archaeonassa, Gordia, treptichnids) exhibit both movement along the sediment–water interface and a degree of movement above and below the sediment surface. In the case of Gordia and the treptichnids, this likely represents probing behavior, indicating the tracemakers were exploiting vertical space in search of nutrients. While the primary trace attributions (fodinichnia and pascichnia) suggest a community dominated by mat grazers (Buatois et al., Reference Buatois, Narbonne, Mángano, Carmona and Myrow2014), these sections are punctuated by organisms that may have been exploiting the mat-free substrate provided by the gutters. Torrowangea provides supplementary support for subsurface life habits, likely representing a deposit feeder outside of the gutters. The presence of these ichnotaxa suggests there is likely a higher diversity of depth-related niches present in these assemblages than has been described for most coeval localities and thus a degree of ecological complexity that is higher than usually attributed to late Ediacaran communities (Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020).
The meiofaunal traces noted here bear superficial morphological similarities to Ediacaran nematode traces from Brazil (see Parry et al., Reference Parry, Boggiani, Condon, Garwood, Leme, McIlroy, Brasier, Trindade, Campanha, Pacheco, Diniz and Liu2017) and are of comparable size. Although these burrows exhibit frequent overcrossing (and thus give the impression of forming genuine “networks”), they also appear to possess rare instances of dichotomous branching (see Fig. 8). In addition, they exhibit a similar surface-level vertical tiering and share an overall sinuosity with the meiofauna from Brazil; however, they are far more linear than the sinuous Ordovician Cochlichnus-like meiofaunal traces described by Baliński et al. (Reference Baliński, Sun and Dzik2013). Modern meiofauna plays important roles in a number of ecological processes, including nutrient cycling and vertical chemostratigraphic flux (Schratzberger and Ingels, Reference Schratzberger and Ingels2018), implying similar styles of ecosystem engineering may have been active in the latest Ediacaran of Namibia.
The material tentatively identified here as probes left by priapulid worms also has significant implications for the complexity of late Ediacaran ecosystems. Priapulids are crown-group ecdysozoans; this indicates the presence of crown-group Bilateria before the Cambrian boundary and in turn significant metazoan overlap between Ediacaran and Cambrian benthic communities. The presence of scalidophorans in these strata would suggest some degree of active predation was occurring, as modern priapulids have been overwhelmingly predatory since the early Paleozoic (Brett and Walker, Reference Brett and Walker2002). While scavenging behaviors have been documented from the Ediacaran of Australia (Gehling and Droser, Reference Gehling and Droser2018), and definitive examples of macroscopic predation are known from the uppermost Ediacaran of China (Hua et al., Reference Hua, Pratt and Zhang2003), priapulid traces in the Nasep–Huns would provide significant support for the Precambrian advent of metazoan predation, suggested to be a major ecological driver of the Cambrian Explosion (Erwin et al., Reference Erwin, Laflamme, Tweedt, Sperling, Pisani and Peterson2011; Erwin and Tweedt, Reference Erwin and Tweedt2012).
In addition, the putative priapulid material could shed light as to the nature of the substrate during deposition. Priapulids can burrow both vertically and horizontally; however, when vertical space is constrained, they will often produce more lateral burrows (Vannier et al., Reference Vannier, Calandra, Gaillard and Zylińska2010). When moving in this way, they will frequently leave their frontal introverts or caudal portions at the sediment–water interface, which Kesidis et al. (Reference Kesidis, Slater, Jensen and Budd2019) suggested likely serves a respiratory function. While these vertical restrictions are artificial when introduced in a laboratory setting, it is possible that the paleoenvironments of the late Ediacaran imposed similar controls, such as the presence of a redox discontinuity surface (RDS) at a comparatively shallow depth (Buatois and Mángano, Reference Buatois and Mángano2011; Kesidis et al., Reference Kesidis, Slater, Jensen and Budd2019). This would be consistent with our understanding of Ediacaran sediments in the lead-up to the Cambrian substrate revolution, in which a positive feedback loop of increasing bioturbation frequency and intensity led to deepening of the RDS (Bottjer et al., Reference Bottjer, Hagadorn and Dornbos2000; Mángano and Buatois, Reference Mángano and Buatois2014). These proposed priapulid traces exhibit shallow movement above and below the sediment–water interface. This could suggest some form of natural constraint against their tendency to burrow vertically, perhaps indicating a chemostratigraphic or physical barrier to deeper movement.
Paleoenvironmental reconstruction
The stratigraphy of this interval suggests an overall shoreline transgression resulting in a transition from a coastal-plain/shallow-water environment to a lower-shoreface setting (Saylor, Reference Saylor2003). At Canyon Roadhouse, the presence of climbing ripples (Fig. 3.1) within the Nasep Member indicates lateral sediment migration coupled with net lateral deposition (Allen, Reference Allen1970). In this case, the combination of lateral and vertical sediment accumulation points to increased sediment supply while the presence of turbidity flows indicates a general level of sediment instability (Saylor, Reference Saylor2003). This idea is supported by the abundance of gutter casts at Farm Arimas (Fig. 5.2) and Canyon Roadhouse, although we note that gutter casts can also be generated by storm-generated flows (Myrow, Reference Myrow1992a; Pérez-López, Reference Pérez-López2001). The large numbers of centimeter-scale tool marks (Figs. 3.5, 5.3, 5.4) and current-aligned tubular body material found in these strata are also indicative of relatively high-energy transport during deposition (Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020). In addition, the lowermost Huns exposures at Canyon Roadhouse are composed of limestone with mudstone chip inclusions (Fig. 3.2), indicating high-energy erosional flows were occurring during this interval (Myrow, Reference Myrow1992b; Myrow and Southard, Reference Myrow and Southard1996). As the section transitions further into the Huns Member, the facies indicate corresponding change in sediment supply and lithology and shift to a lower-shoreface environment. The relative paucity of sedimentary structures stratigraphically higher in the Huns suggests deposition was occurring below wave base (Saylor, Reference Saylor2003).
Potential controls on trace-fossil preservation
Several ichnotaxa, in particular the small treptichnids and meiofaunal burrows, are most commonly found preserved in positive hyporelief on the bases of gutter casts, raising an interesting question as to whether the tracemakers were actively exploiting these areas. The presence of widespread MISS (in particular, Kinneyia and Intrites) suggests that much of the sedimentary surface in the Nasep–Huns transition was colonized by microbial mats and may have posed a physical and chemical barrier to penetration by small metazoan fauna. In this scenario, the removal of microbial mats through the formation of gutter casts may have exposed organic-rich sediments that could be quickly exploited by opportunistic bilaterian metazoans (see Pemberton et al., Reference Pemberton, Maceachern, Ranger and Pemberton1992). In addition, the lack of an obscuring mat layer in these instances could have facilitated the preservation of these traces as further sediment deposition occurred; we note that this scenario requires an interval of stasis between the formation of the gutter and subsequent deposition of the sediment cast to preserve the “true substrate” (see Davies and Shillito, Reference Davies and Shillito2021).
An alternative scenario involves these tracemakers being widespread throughout the paleoenvironment but preserved only in gutter casts (as in the preceding, during an interval of stasis between formation of the gutter and subsequent infilling by sediment) where the overlying microbial mat has been removed. Wray (Reference Wray2015) suggested that the microbial mats that typify much of the late Ediacaran may not have been ideal for preserving surface structures as the object (or organism) had to penetrate the mat and disturb the sediment underneath for the structure/trace to be recorded; this would be especially true for extremely small tracemakers (although Buatois and Mángano, Reference Buatois, Mángano, Noffke and Chafetz2012, 2016 pointed out that microbial mats can often enhance the preservation of smaller-scale ichnofossils due to their inherent microbial binding capabilities, while Gingras et al., Reference Gingras, Hagadorn, Seilacher, Lalonde, Pecoits, Petrash and Konhauser2011 noted that modern microbial mats are often found associated with high infaunal animal diversities, due in large part to the increased oxygen content relative to overlying water). This preservation potential would, however, depend on a number of factors, including mat type (epi- versus endobenthic) and thickness. We also note that lithological contrast at the interface between underlying and infilling sandstones may have played a role in preserving these traces; the smallest fossils are most often found in positive relief on the underside of gutter casts (i.e., positive hyporelief), which could conceivably be the result of finer material casting small burrows formed in underlying substrate. However, given that we have thus far found gutter casts only as loose blocks, this taphonomic model remains a hypothesis. If correct, however, it follows that small bilaterian traces (including treptichnids) might be more widespread in these intervals than is currently recognized and that gutter casts may represent valuable taphonomic windows in which optimal rheological conditions can help preserve traces left by tiny metazoans.
A final alternative involves the tracemaking organisms being caught up in flow and deposited at the interface of the gutter casts during burial. This might imply that traces preserved on the bases of gutter casts thus represent escape behavior (“fugichnia”); however, the observation that most traces found in these slabs appear typical (e.g., the regular “probes” formed by small treptichnids; see Fig. 7) might constitute an argument against this. A detailed reinvestigation of these traces, along with a fine-scale characterization of the internal sedimentary structure of gutter casts themselves, would help to test between these three models (with potential implications for finding complex burrowing behavior even lower in the Nama succession).
In summary, the Nasep–Huns ichnofossils first described by Jensen et al. (Reference Jensen, Saylor, Gehling and Germs2000) and expanded upon here represent among the oldest examples of complex infaunal activity known. Coupled with this unusual mode of preservation in gutter casts, it is possible this comparatively early assemblage represents a stage in which the bioturbative behavior of the tracemakers was not yet robust enough to breach the matground boundary. We note that, in Namibia, these complex trace-fossil assemblages are restricted to the last few million years of the Ediacaran (rather than the entire “Nama” interval; see also Mángano and Buatois, Reference Mángano and Buatois2020); however, if late Ediacaran mats were preventing some of the smallest traces from being recorded, these assemblages could possibly extend further back in time.
Environmental controls on latest Ediacaran evolutionary ecology
The comparative ichnodiversity of the Nasep–Huns in relation to other late Ediacaran sites may in part reflect oxygen availability in the Witputs sub-basin during deposition (Wood et al., Reference Wood, Poulton, Prave, Hoffmann, Clarkson, Guilbaud, Lyne, Tostevin, Bowyer, Penny, Curtis and Kasemann2015; Tostevin et al., Reference Tostevin, Wood, Shields, Poulton, Guilbaud, Bowyer, Penny, He, Curtis, Hoffmann and Clarkson2016). As described, this interval likely represents a transgressive sequence, shifting from the high-energy, shallow-marine conditions of the Nasep into the comparatively quieter—but still heavily storm-dominated—outer shelf facies of the Huns (Saylor, Reference Saylor2003; Darroch et al., Reference Darroch, Cribb, Buatois, Germs, Kenchington, Smith, Mocke, O'Neil, Schiffbauer, Maloney, Racicot, Turk, Gibson, Almond, Koester, Boag, Tweedt and Laflamme2020). Wood et al. (Reference Wood, Poulton, Prave, Hoffmann, Clarkson, Guilbaud, Lyne, Tostevin, Bowyer, Penny, Curtis and Kasemann2015) suggested a favorable mid-ramp setting would have provided the most consistent access to oxygen, with deeper-water settings possessing insufficient oxygen levels to sustain communities capable of complex behavior. By contrast, shallower environments would have experienced only transient oxygenation (Wood et al., Reference Wood, Poulton, Prave, Hoffmann, Clarkson, Guilbaud, Lyne, Tostevin, Bowyer, Penny, Curtis and Kasemann2015). During this episode of shoreline transgression, the Nasep–Huns fauna may thus have been positioned at an optimal location within the greater carbonate ramp setting, allowing for greater diversity and the evolution of more complex and oxygen-intensive behaviors such as macropredation. However, an argument could also be made that oxygen levels shortly beneath the sediment–water interface may have been just as, if not more, relevant to late Ediacaran infaunal tracemakers than oxygen levels in the overlying water column. Within other late Ediacaran sections characterized by abundant matgrounds, microbial mats themselves have been suggested as providing oxygen “oases” that could be exploited by emerging bilaterians (Gingras et al., Reference Gingras, Hagadorn, Seilacher, Lalonde, Pecoits, Petrash and Konhauser2011; Xiao et al., Reference Xiao, Chen, Zhou and Yuan2019) while leaving the underlying sediment relatively oxygen poor. In settings such as the Nasep–Huns transition in Namibia, however, where microbial mats were arguably patchier (being locally removed by storms and other sources of sediment instability), it is possible that the sediment substrate may have been oxygenated to greater depths, allowing it to be exploited by bilaterian tracemakers. Both hypothesized controls on the appearance of these more complex trace fossils in the Nasep–Huns transition do, however, emphasize the potential close relationship between terminal Ediacaran animals and redox dynamics (Xiao et al., Reference Xiao, Chen, Zhou and Yuan2019).
Conclusions
Paleontological and paleoenvironmental analysis of the Nasep–Huns transition in southern Namibia illustrates that diverse communities of bilaterian metazoan tracemakers were thriving before the Cambrian. This adds to our understanding of the pattern and timing of the latest Neoproterozoic rise of animals, demonstrating that many of these complex behaviors not only emerged much earlier than previously thought, but also evolved in concert with matground-dominated Ediacaran environments. Detailed paleontological investigation of the Nasep–Huns transition has also revealed new trace- and body-fossil taxa for the region, including the first documented appearance of the late-Ediacaran index fossil Corumbella from Namibia. While more detailed investigation will be required to determine the exact nature of the indeterminate trace fossils described here, putative assignment to Ecdysozoa raises new hypotheses surrounding the diversity of feeding behaviors in the latest Ediacaran, perhaps indicating the emergence of predation as a component of these benthic ecosystems. Finally, the sedimentological characteristics of the Nasep–Huns transition, in particular the preservation of meiofaunal trace fossils and small treptichnids in gutter casts, raise the possibility that these behaviors may be more widespread than is currently thought but rarely well preserved due to the presence of widespread seafloor mats in the late Ediacaran. Gutter casts and other seafloor-disruptive features may thus represent an unusual taphonomic window preserving sub-centimeter trace fossils; future investigations focusing on these features may thus reveal even older examples of complex infaunal behaviors. The breadth of both taxonomic and behavioral diversity present in the Nasep–Huns transition adds to a changing view of the latest Ediacaran, revealing the roots of the agronomic revolution that followed.
Acknowledgements
This work was supported by funding from a National Geographic Discovery Grant (#9968-16) to S.A.F.D. and M.L and a Paleontological Society A.J. Boucot Award to S.A.F.D. M.L. was supported in part by an NSERC Discovery Grant (no. RGPIN 435402). K.A.T. is grateful to S. Jensen for providing invaluable insights into priapulid trace fossils. The authors also extend sincere thanks to P. Craven, H. Kinghorn, and C. Becker for allowing access to the sections at Farm Arimas, as well as to the Geological Survey of Namibia for logistical assistance. This manuscript was considerably improved after constructive reviews from S. Xiao and M.G. Mángano, and A. Liu.
Competing interests
The authors declare none.