Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T18:07:58.977Z Has data issue: false hasContentIssue false

Secondary frequency control stabilising voltage dynamics

Published online by Cambridge University Press:  20 January 2022

EDER BATISTA TCHAWOU TCHUISSEU
Affiliation:
Institute of Thermomechanics, Academy of Science of the Czech Republic, 18200 Prague 8, Czech Republic emails: [email protected]; [email protected]
ERIC-DONALD DONGMO
Affiliation:
Department of Mechanical Engineering, College of Technology, University of Buea, Po. Box 63, Buea, Cameroon email: [email protected] Laboratory of Modeling and Simulation in Bio-Engineering and Prototypes, University of Yaounde 1, Yaoundé, Cameroon email: [email protected]
PAVEL PROCHÁZKA
Affiliation:
Institute of Thermomechanics, Academy of Science of the Czech Republic, 18200 Prague 8, Czech Republic emails: [email protected]; [email protected]
PAUL WOAFO
Affiliation:
Laboratory of Modeling and Simulation in Bio-Engineering and Prototypes, University of Yaounde 1, Yaoundé, Cameroon email: [email protected]
PERE COLET
Affiliation:
Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain email: [email protected]
BENJAMIN SCHÄFER
Affiliation:
School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK Faculty of Science and Technology, Norwegian University of Life Sciences, 1432 Å s, Norway email: [email protected]

Abstract

The ongoing energy transition challenges the stability of the electrical power system. Stable operation of the electrical power grid requires both the voltage (amplitude) and the frequency to stay within operational bounds. While much research has focused on frequency dynamics and stability, the voltage dynamics has been neglected. Here, we study frequency and voltage stability in the case of simple networks via linear stability and bulk analysis. In particular, our linear stability analysis of the network shows that the frequency secondary control guarantees the stability of a particular electric network. Even more interesting, while we only consider secondary frequency control, we observe a stabilising effect on the voltage dynamics, especially in our numerical bulk analysis.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auer, S., Kleis, K., Schultz, P., Kurths, J. & Hellmann, F. (2016) The impact of model detail on power grid resilience measures. Eur. Phys. J. Special Top. 225, 609.CrossRefGoogle Scholar
Böttcher, P. C., Otto, A., Kettemann, S. & Agert, C. (2020) Time delay effects in the control of synchronous electricity grids. Chaos Interdiscip. J. Nonlinear Sci. 30, 013122.CrossRefGoogle ScholarPubMed
Dongmo, E. D., Colet, P. & Woafo, P. (2017) Power grid enhanced resilience using proportional and derivative control with delayed feedback. Eur. Phys. J. B 90, 6.CrossRefGoogle Scholar
Dongmo, E. D. & Woafo, P. (2015) Effects of asymmetry, transmission delay and noises on the stability of an elementary electricity network. Eur. Phys. J. B 88, 1.CrossRefGoogle Scholar
Dorfler, F. & Bullo, F. (2013) Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circ. Syst. I Regular Papers 60, 150.Google Scholar
Dörfler, F. & Bullo, F. (2014) Synchronization in complex networks of phase oscillators: A survey. Automatica 50, 1539.CrossRefGoogle Scholar
Filatrella, G., Nielsen, A. H. & Pedersen, N. F. (2008) Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485.CrossRefGoogle Scholar
Gorjão, L. R., Anvari, M., Kantz, H., Beck, C., Witthaut, D., Timme, M. & Schäfer, B. (2020) Data-driven model of the power-grid frequency dynamics. IEEE Access 8, 43082.CrossRefGoogle Scholar
Hellmann, F., Schultz, P., Grabow, C., Heitzig, J. & Kurths, J. (2016) Survivability of deterministic dynamical systems. Sci. Rep. 6, 225–241.Google Scholar
Horn, A. (1962) Eigenvalues of sums of Hermitian matrices. Pac. J. Math. 12, 225.CrossRefGoogle Scholar
Machowski, J., Bialek, J. & Bumby, J. (2011) Power System Dynamics: Stability and Control, John Wiley & Sons, New York.Google Scholar
Mancarella, P., Moriarty, J., Philpott, A., Veraart, A., Zachary, S. & Zwart, B. (2021) Introduction: the mathematics of energy systems. Phil. Trans. R. Soc. A. 379, 20190425. https://doi.org/10.1098/rsta.2019.0425CrossRefGoogle Scholar
Manik, D., Witthaut, D., Schäfer, B., Matthiae, M., Sorge, A., Rohden, M., Katifori, E. & Timme, M. (2014) Supply networks: instabilities without overload. Eur. Phys. J. Special Top. 223, 2527.CrossRefGoogle Scholar
Nishikawa, T. & Motter, A. E. (2015) Comparative analysis of existing models for power-grid synchronization New J. Phys. 17, 015012.CrossRefGoogle Scholar
Schäfer, B., Grabow, C., Auer, S., Kurths, J., Witthaut, D. & Timme, M. (2016) Taming instabilities in power grid networks by decentralized control. Eur. Phys. J. Special Top. 225, 569.CrossRefGoogle Scholar
Schäfer, B., Matthiae, M., Timme, M. & Witthaut, D. (2015) Decentral Smart Grid Control. New J. Phys. 17, 015002.CrossRefGoogle Scholar
Schäfer, B., Matthiae, M., Zhang, X., Rohden, M., Timme, M. & Witthaut, D. (2017) Escape routes, weak links, and desynchronization in fluctuation-driven networks Phys. Rev. E 95, 060203.CrossRefGoogle ScholarPubMed
Schmietendorf, K., Peinke, J., Friedrich, R. & Kamps, O. (2014) Self-organized synchronization and voltage stability in networks of synchronous machines. Eur. Phys. J. Special Top. 223, 2577.CrossRefGoogle Scholar
Sharafutdinov, K., Rydin Gorjão, L., Matthiae, M., Faulwasser, T. & Witthaut, D. (2018) Rotor-angle versus voltage instability in the third-order model for synchronous generators. Chaos Interdiscip. J. Nonlinear Sci. 28, 033117.CrossRefGoogle ScholarPubMed
Sun, H., Guo, Q., Qi, J., Ajjarapu, V., Bravo, R., Chow, J., Li, Z., Moghe, R., Nasr-Azadani, E., Tamrakar, U., Taranto, G. N., Tonkoski, R., Valverde, G., Wu, Q. & Yang, G. (2019) Review of challenges and research opportunities for voltage control in smart grids. IEEE Trans. Power Syst. 34, 2790.CrossRefGoogle Scholar
Tchawou, E. & Woafo, P. (2014) Harvesting energy using a magnetic mass and a sliding behaviour. Nonlinear Eng. 3, 89.CrossRefGoogle Scholar
Tchuisseu, E. B. T., Gomila, D., Colet, P., Witthaut, D., Timme, M. & Schäfer, B. (2018) Curing Braess’ paradox by secondary control in power grids. New J. Phys. 20, 083005.CrossRefGoogle Scholar
Tchuisseu, E. T., Gomila, D., Brunner, D. & Colet, P. (2017) Effects of dynamic-demand-control appliances on the power grid frequency. Phys. Rev. E 96, 022302.CrossRefGoogle ScholarPubMed
Tchuisseu, E. T., Gomila, D. & Colet, P. (2019) Reduction of power grid fluctuations by communication between smart devices. Int. J. Electr. Power Energy Syst. 108, 145.CrossRefGoogle Scholar
Tékam, G. O., Tchuisseu, E. T., Kwuimy, C. K. & Woafo, P. (2014) Analysis of an electromechanical energy harvester system with geometric and ferroresonant nonlinearities. Nonlinear Dyn. 76, 1561.CrossRefGoogle Scholar
Tyloo, M. & Jacquod, P. (2020) Primary control effort under fluctuating power generation in realistic high-voltage power networks. IEEE Control Syst. Lett. 5, 929.CrossRefGoogle Scholar
Weitenberg, E., Jiang, Y., Zhao, C., Mallada, E., De Persis, C. & Dörfler, F. (2017) Robust decentralized secondary frequency control in power systems: merits and trade-offs. arXiv preprint arXiv:1711.07332.Google Scholar
Witthaut, D. & Timme, M. (2012) Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036.CrossRefGoogle Scholar
Witthaut, D. & Timme, M. (2013) Nonlocal failures in complex supply networks by single link additions. Eur. Phys. J. B 86, 1.CrossRefGoogle Scholar