No CrossRef data available.
Article contents
Non-torsion algebraic cycles on the Jacobians of Fermat quotients
Published online by Cambridge University Press: 22 November 2024
Abstract
We study the Abel-Jacobi image of the Ceresa cycle $W_{k, e}-W_{k, e}^-$, where
$W_{k, e}$ is the image of the k-th symmetric product of a curve X with a base point e on its Jacobian variety. For certain Fermat quotient curves of genus g, we prove that for any choice of the base point and
$k \leq g-2$, the Abel-Jacobi image of the Ceresa cycle is non-torsion. In particular, these cycles are non-torsion modulo rational equivalence.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society
References
Beauville, A.,
A non-hyperelliptic curve with torsion Ceresa class
. C. R. Math. Acad. Sci. Paris 359(2021), 871–872.CrossRefGoogle Scholar
Bloch, S., Algebraic cycles and values of
$L$
-functions. J. Reine Angew. Math. 350(1984), 94–108.Google Scholar

Carlson, J. A.,
Extensions of mixed Hodge structures
. In Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff and Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 107–127.Google Scholar
Ceresa, G.,
$C$
is not algebraically equivalent to
${C}^{-}$
in its Jacobian. Ann. of Math. (2) 117(1983), no. 2, 285–291.CrossRefGoogle Scholar


Darmon, H., Rotger, V. and Sols, I.,
Iterated integrals, diagonal cycles and rational points on elliptic curves
. In Publ. Math. Besancon Algèbre Théorie Nr., 2012/2[Mathematical Publications of Besancon, Algebra and Number Theory] Presses Universitaires de Franche-Comté, Besancon, 2012, 19–46.Google Scholar
Eskandari, P. and Murty, V. K.,
On the harmonic volume of Fermat curves
. Proc. Amer. Math. Soc. 149(2021), no. 5, 1919–1928.CrossRefGoogle Scholar
Eskandari, P. and Murty, V. K.,
On Ceresa cycles of Fermat curves
. J. Ramanujan Math. Soc. 36(2021), no. 4, 363–382.Google Scholar
Gross, B. H. and Rohrlich, D. E.,
Some results on the Mordell-Weil group of the Jacobian of the Fermat curve
. Invent. Math. 44(1978), no. 3, 201–224.CrossRefGoogle Scholar
Hain, R. M.,
The geometry of the mixed Hodge structure on the fundamental group
. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 247–282.Google Scholar
Hartshorne, R.,
Algebraic geometry
, Grad. Texts in Math., No. 52, Springer-Verlag, New York-Heidelberg, 1977.Google Scholar
Irokawa, S. and Sasaki, R.,
On a family of quotients of Fermat curves
. Tsukuba J. Math. 19(1995), no. 1, 121–139.CrossRefGoogle Scholar
Kaenders, R. H.,
The mixed Hodge structure on the fundamental group of a punctured Riemann surface
. Proc. Amer. Math. Soc. 129(2001), no. 5, 1271–1281.CrossRefGoogle Scholar
Kimura, K.,
On modified diagonal cycles in the triple products of Fermat quotients
. Math. Z. 235(2000), no. 4, 727–746.CrossRefGoogle Scholar
Lilienfeldt, D. T.-B. G. and Shnidman, A.,
Experiments with Ceresa classes of cyclic Fermat quotients
. Proc. Amer. Math. Soc. 151(2023), no. 3, 931–947.CrossRefGoogle Scholar
Otsubo, N.,
On the Abel-Jacobi maps of Fermat Jacobians
. Math. Z. 270(2012), no. 1–2, 423–444,CrossRefGoogle Scholar
Pulte, M. J.,
The fundamental group of a Riemann surface: mixed Hodge structures and algebraic cycles
. Duke Math. J. 57(1988), no. 3, 721–760.CrossRefGoogle Scholar
Tadokoro, Y.,
A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic
. Math. Z. 260(2008), no. 2, 265–275.CrossRefGoogle Scholar
Tadokoro, Y.,
A nontrivial algebraic cycle in the Jacobian variety of the Fermat sextic
. Tsukuba J. Math. 33(2009), no. 1, 29–38.CrossRefGoogle Scholar
Tadokoro, Y.,
Nontrivial algebraic cycles in the Jacobian varieties of some quotients of Fermat curves
. Internat. J. Math. 27(2016), no. 3, 1650027, 10 pp.CrossRefGoogle Scholar