Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:10:38.078Z Has data issue: false hasContentIssue false

LOWER-ORDER TERMS OF THE ONE-LEVEL DENSITY OF A FAMILY OF QUADRATIC HECKE $\boldsymbol {L}$-FUNCTIONS

Published online by Cambridge University Press:  22 February 2022

PENG GAO
Affiliation:
School of Mathematical Sciences, Beihang University, Beijing 100191, China e-mail: [email protected]
LIANGYI ZHAO*
Affiliation:
School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

Abstract

In this paper, we study lower-order terms of the one-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the generalized Riemann hypothesis, our result is valid for even test functions whose Fourier transforms are supported in $(-2, 2)$ . Moreover, we apply the ratios conjecture of L-functions to derive these lower-order terms as well. Up to the first lower-order term, we show that our results are consistent with each other when the Fourier transforms of the test functions are supported in $(-2, 2)$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Communicated by Dzmitry Badziahin

P. G. is supported in part by NSFC grant 11871082 and L. Z. by FRG grant PS43707 and the Goldstar Award PS53450 from the University of New South Wales (UNSW). Parts of this work were done when P. G. visited UNSW in September 2019. He wishes to thank UNSW for the invitation, financial support and warm hospitality during his pleasant stay. Finally, the authors thank the anonymous referee for his/her very careful reading of this manuscript and many helpful comments and suggestions.

References

Baier, S. and Zhao, L., ‘On the low-lying zeros of Hasse–Weil $L$ -functions for elliptic curves’, Adv. Math. 219(3) (2008), 952985.CrossRefGoogle Scholar
Brumer, A., ‘The average rank of elliptic curves, I’, Invent. Math. 109(3) (1992), 445472.CrossRefGoogle Scholar
Cho, P. J. and Kim, H. H., ‘Low lying zeros of Artin L-functions’, Math. Z. 279(3–4) (2015), 669688.CrossRefGoogle Scholar
Conrey, J. B., Farmer, D. W. and Zirnbauer, M. R., ‘Autocorrelation of ratios of L-functions’, Commun. Number Theory Phys. 2(3) (2008), 593636.CrossRefGoogle Scholar
Conrey, J. B. and Snaith, N. C., ‘Applications of the L-functions ratios conjectures’, Proc. Lond. Math. Soc. (3) 94(3) (2007), 594646.CrossRefGoogle Scholar
Davenport, H., Multiplicative Number Theory, 3rd edn, Graduate Texts in Mathematics, 74 (Springer-Verlag, Berlin, 2000).Google Scholar
Dueñez, E. and Miller, S. J., ‘The low lying zeros of a $GL(4)$ and a $GL(6)$ family of $L$ -functions’, Compos. Math. 142(6) (2006), 14031425.CrossRefGoogle Scholar
Dueñez, E. and Miller, S. J., ‘The effect of convolving families of $L$ -functions on the underlying group symmetries’, Proc. Lond. Math. Soc. (3) 99(3) (2009), 787820.CrossRefGoogle Scholar
Fiorilli, D., Parks, J. and Södergren, A., ‘Low-lying zeros of elliptic curve $L$ -functions: beyond the ratios conjecture’, Math. Proc. Cambridge Philos. Soc. 160(2) (2016), 315351.CrossRefGoogle Scholar
Fiorilli, D., Parks, J. and Södergren, A., ‘Low-lying zeros of quadratic Dirichlet $L$ -functions: lower order terms for extended support’, Compos. Math. 153(6) (2017), 11961216.CrossRefGoogle Scholar
Fiorilli, D., Parks, J. and Södergren, A., ‘Low-lying zeros of quadratic Dirichlet $L$ -functions: a transition in the ratios conjecture’, Q. J. Math. 69(4) (2018), 11291149.Google Scholar
Fouvry, E. and Iwaniec, H., ‘Low-lying zeros of dihedral $L$ -functions’, Duke Math. J. 116(2) (2003), 189217.CrossRefGoogle Scholar
Gao, P., ‘ $n$ -level density of the low-lying zeros of quadratic Dirichlet $L$ -functions’, Int. Math. Res. Not. IMRN 2014(6) (2014), 16991728.CrossRefGoogle Scholar
Gao, P. and Zhao, L., ‘One level density of low-lying zeros of families of L-functions’, Compos. Math. 147(1) (2011), 118.CrossRefGoogle Scholar
Gao, P. and Zhao, L., ‘One level density of low-lying zeros of quadratic and quartic Hecke L-functions’, Canad. J. Math. 72(2) (2020), 427454.CrossRefGoogle Scholar
Gao, P. and Zhao, L., ‘One level density of low-lying zeros of quadratic Hecke $L$ -functions to prime moduli’, Hardy-Ramanujan J. 43 (2020), 173187.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series and Products, 6th edn (Academic Press, San Diego, CA, 2000).Google Scholar
Güloğlu, A. M., ‘Low-lying zeros of symmetric power L-functions , Int. Math. Res. Not. IMRN 2005(9) (2005), 517550.CrossRefGoogle Scholar
Heath-Brown, D. R., ‘The average rank of elliptic curves’, Duke Math. J. 122(3) (2004), 225320.CrossRefGoogle Scholar
Hughes, C. and Miller, S. J., ‘Low-lying zeros of $L$ -functions with orthogonal symmetry’, Duke Math. J. 136(1) (2007), 115172.CrossRefGoogle Scholar
Hughes, C. P. and Rudnick, Z., ‘Linear statistics of low-lying zeros of L-functions’, Q. J. Math. 54(3) (2003), 309333.CrossRefGoogle Scholar
Iwaniec, H. and Kowalski, E., Analytic Number Theory, American Mathematical Society Colloquium Publications, 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Iwaniec, H., Luo, W. and Sarnak, P., ‘Low lying zeros of families of L-functions’, Publ. Math. Inst. Hautes Études Sci. 91 (2000), 55131.CrossRefGoogle Scholar
Katz, N. and Sarnak, P., ‘Zeros of zeta functions and symmetries’, Bull. Amer. Math. Soc. (N.S.) 36(1) (1999), 126.CrossRefGoogle Scholar
Katz, N. and Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Monodromy, American Mathematical Society Colloquium Publications, 45 (American Mathematical Society, Providence, RI, 1999).Google Scholar
Mason, A. M. and Snaith, N. C., ‘Symplectic n-level densities with restricted support’, Random Matrices Theory Appl. 5(4) (2016).CrossRefGoogle Scholar
Mason, A. M. and Snaith, N. C., ‘Orthogonal and symplectic $n$ -level densities’, Mem. Amer. Math. Soc. 251(1194) (2018), 93 pages.CrossRefGoogle Scholar
Miller, S. J., ‘One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries’, Compos. Math. 140(4) (2004), 952992.CrossRefGoogle Scholar
Miller, S. J., ‘A symplectic test of the $L$ -functions ratios conjecture’, Int. Math. Res. Not. IMRN 2008 (2008). Article ID rnm146.Google Scholar
Miller, S. J., ‘Lower order terms in the 1-level density for families of holomorphic cuspidal newforms’, Acta Arith. 137(1) (2009), 5198.CrossRefGoogle Scholar
Miller, S. J. and Peckner, P., ‘Low-lying zeros of number field $L$ -functions’, J. Number Theory 132(12) (2012), 28662891.CrossRefGoogle Scholar
Montgomery, H. L., ‘The pair correlation of zeros of the zeta function’, in: Analytic Number Theory (Saint Louis University, St. Louis, MO, 1972), Proceedings of Symposia in Pure Mathematics, XXIV (ed. Diamond, H. G.) (American Mathematical Society, Providence, RI, 1973), 181193.Google Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory, Cambridge Studies in Advanced Mathematics, 97 (Cambridge University Press, Cambridge, 2007).Google Scholar
Özlük, A. E. and Snyder, C., ‘On the distribution of the nontrivial zeros of quadratic $L$ -functions close to the real axis’, Acta Arith. 91(3) (1999), 209228.CrossRefGoogle Scholar
Ricotta, G. and Royer, E., ‘Lower order terms for the one-level densities of symmetric power $L$ -functions in the level aspect’, Acta Arith. 141(2) (2010), 153170.CrossRefGoogle Scholar
Ricotta, G. and Royer, E., ‘Statistics for low-lying zeros of symmetric power $L$ -functions in the level aspect’, Forum Math. 23(5) (2011), 9691028.CrossRefGoogle Scholar
Royer, E., ‘Petits zéros de fonctions L de formes modulaires’, Acta Arith. 99(2) (2001), 147172.CrossRefGoogle Scholar
Rubinstein, M. O., ‘Low-lying zeros of $L$ -functions and random matrix theory’, Duke Math. J. 209(1) (2001), 147181.CrossRefGoogle Scholar
Shankar, A., Södergren, A. and Templier, N., ‘Sato–Tate equidistribution of certain families of Artin $L$ -functions’, Forum Math. Sigma 7 (2019), e23.CrossRefGoogle Scholar
Soundararajan, K., ‘Nonvanishing of quadratic Dirichlet $L$ -functions at s =  $\frac{1}{2}$ ’, Ann. of Math. (2) 152(2) (2000), 447488.CrossRefGoogle Scholar
Vladimirov, V. S., Equations of Mathematical Physics, translated from the Russian by Audrey Littlewood, (ed. Jeffrey, A.), Pure and Applied Mathematics, 3 (Marcel Dekker, New York, 1971).Google Scholar
Waxman, E., ‘Lower order terms for the one-level density of a symplectic family of Hecke L-functions’, J. Number Theory 221 (2021), 447483.CrossRefGoogle Scholar
Yang, A., ‘Distribution problems associated to zeta functions and invariant theory’, PhD Thesis, Princeton University, ProQuest LLC, Ann Arbor, MI, 2009.Google Scholar
Young, M. P., ‘Low-lying zeros of families of elliptic curves’, J. Amer. Math. Soc. 19(1) (2005), 205250.CrossRefGoogle Scholar
Young, M. P., ‘Lower-order terms of the $1$ -level density of families of elliptic curves’, Int. Math. Res. Not. IMRN 10 (2005), 587633.CrossRefGoogle Scholar