Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-05-01T10:18:55.402Z Has data issue: false hasContentIssue false

A cable-driven elbow exoskeleton with variable stiffness actuator for upper limb rehabilitation

Published online by Cambridge University Press:  18 December 2024

Lei Yang
Affiliation:
The State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
Fuhai Zhang*
Affiliation:
The State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
Yili Fu
Affiliation:
The State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
*
Corresponding author: Fuhai Zhang; Email: [email protected]

Abstract

Elbow, with complex physiological structure, plays an important role in upper limb motion which can be assisted with exoskeleton in rehabilitation. However, the stiffness of elbow changes while training which decline the comfort and effect of rehabilitation. Moreover, the rotation axis of elbow is changing which will cause secondary injuries. In this paper, we design an elbow exoskeleton with a variable stiffness actuator and a deviation compensation unit to assist elbow rehabilitation. Firstly, we design a variable stiffness actuator by symmetric actuation principle to adapt the change of elbow stiffness. The parameters of the variable stiffness actuator are optimized by motion simulation. Next, we design a deviation compensation unit to follow the rotation axis deviation outside the horizontal plane. The compensation area is simulated to cover the deviation. Finally, simulation and experiments are carried out to show the performance of our elbow exoskeleton. The workspace can meet the need of daily elbow motion while the variable stiffness actuator can adjust the exoskeleton stiffness as expectation.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Cao, M. and Li, X., “Effectiveness of modified constraint-induced movement therapy for upper limb function intervention following stroke: A brief review,” Sports Med. Health Sci. 3(3), 134137 (2021).CrossRefGoogle ScholarPubMed
Shumway-Cook, A. and Woollacott, M. H.. Motor Control: Translating Research into Clinical Practice”. 5th edition, (Lippincott Williams & Wilkins, USA, 2016).Google Scholar
Laut, J., Porfiri, M. and Raghavan, P., “The present and future of robotic technology in rehabilitation,” Curr. Phys. Med. Rehab. Rep. 4(4), 312319 (2016).CrossRefGoogle ScholarPubMed
de la Iglesia, D. H., Mendes, A.S., González, G.V., Jiménez-Bravo, D.M. and de Paz Santana, J. F., “Connected elbow exoskeleton system for rehabilitation training based on virtual reality and context-aware,” Sensors 20(3), 858 (2020).CrossRefGoogle ScholarPubMed
Lin, L., Zhang, F., Yang, L. and Fu, Y., “Design and modeling of a hybrid soft-rigid hand exoskeleton for poststroke rehabilitation,” Int. J. Mech. Sci. 212, 106831 (2021).CrossRefGoogle Scholar
Qassim, HM. and Wan Hasan, W. Z., “A review on upper limb rehabilitation robots,” Appl. Sci. 10(19), 6976 (2020).CrossRefGoogle Scholar
Maria, L., Andrea, M., Paolo, P., et al., “Instrumental indices for upper limb function assessment in stroke patients: A validation study,” J. Neuroeng. Rehabil. 52(13), 111 (2016).Google Scholar
Dean, C. M., Rissel, C., Sherrington, C., Sharkey, M., Cumming, R. G., Lord, S. R., Barker, R. N., Kirkham, C. and O’Rourke, S., “Exercise to enhance mobility and prevent falls after stroke: The community stroke club randomized trial,” Neurorehabil. Neural Repair 68(9), 10461057 (2012).CrossRefGoogle Scholar
Korayem, AH., Nekoo, SR. and Korayem, M. H., “Optimal sliding mode control design based on the state-dependent Riccati equation for cooperative manipulators to increase dynamic load carrying capacity,” Robotica 37(2), 321337 (2019).CrossRefGoogle Scholar
Ingram, L. A., Butler, A. A., Walsh, L. D., Brodie, M. A., Lord, S. R., Gandevia, S. C. and Tremblay, F., “The upper limb physiological profile assessment description, reliability, normative values and criterion validity,” PLoS ONE 14(6), 133 (2019).CrossRefGoogle ScholarPubMed
Chaparro-Rico, B. D. M., Daniele, C., et al., “NURSE-2 DoF device for arm motion guidance: Kinematic, dynamic, and FEM analysis,” Appl. Sci. 10(2139), 122 (2020).CrossRefGoogle Scholar
Shih, T.-Y., Wu, C.-Y., Lin, K.-C., Cheng, C.-H., Hsieh, Y.-W., Chen, C.-L., Lai, C.-J. and Chen, C.-C., “Effects of action observation therapy and mirror therapy after stroke on rehabilitation outcomes and neural mechanisms by MEG: Study protocol for a randomized controlled trial,” Trials 18(1), 459 (2017).CrossRefGoogle ScholarPubMed
Proietti, T., O’Neill, C., Hohimer, C. J., Nuckols, K., Clarke, M. E., Zhou, Y. M., Lin, D. J. and Walsh, C. J., “Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation,” IEEE Robot. Autom. Lett. 6(2), 23812388 (2021).CrossRefGoogle Scholar
Zhang, FH., Yang, L. and Fu, Y. L., “Design of a novel elastic torque sensor for hand injuries rehabilitation based on bowden cable,” IEEE Trans. Instrum. Meas. 68(9), 31843192 (2019).CrossRefGoogle Scholar
Rifky, I., Mochammad, A., Perkasa, I. A. et al., “Soft elbow exoskeleton for upper limb assistance incorporating dual motor-tendon actuator,” Electronics 8(10), 1184 (2019).Google Scholar
Ma, R., Tang, Z., Gao, X., et al.Mechanism Design and Kinematics Analysis of an Original Cable-driving Exoskeleton Robot”,” In: 2018, 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2018) pp. 18691874.CrossRefGoogle Scholar
Perry, J. C., Rosen, J. and Burns, S., “Upper-limb powered exoskeleton design,” IEEE/ASME Trans. Mechatron. 12(4), 408417 (2007).CrossRefGoogle Scholar
Wu, KY., Su, YY., Yu, YL., et al.Series Elastic Actuation of an Elbow Rehabilitation Exoskeleton with Axis Misalignment Adaptation”,” In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE Int Conf Rehabil Robot, 2017) pp. 567572.CrossRefGoogle Scholar
Copaci, D., Martin, F., Moreno, L. and Blanco, D., “SMA based elbow exoskeleton for rehabilitation therapy and patient evaluation,” IEEE Access 7, 3147331484 (2019).CrossRefGoogle Scholar
Dežman, M., Asfour, T., Ude, A., et al., “Mechanical design and friction modelling of a cable-driven upper-limb upper limb exoskeleton,” Robotica 39(9), 17111728 (2021).Google Scholar
Fan, Y., Yuan, J., Wu, Y. and Qiao, H., “A feedforward compensation approach for cable-driven musculoskeletal systems,” Robotica 41(4), 12211230 (2023).CrossRefGoogle Scholar
Rodríguez-León, J.F., Chaparro-Rico, B. D. M., Russo, M. and Cafolla, D., “An autotuning cable-driven device for home rehabilitation,” J. Healthc. Eng. 2021, 115 (2021).CrossRefGoogle ScholarPubMed
Saab, W., Rone, W. and Ben-Tzvi, P., “Discrete modular serpentine robotic tail: Design, analysis and experimentation,” Robotica 36(7), 9941018 (2018).CrossRefGoogle Scholar
Wu, Q., Chen, B. and Wu, H., “Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance,” Mechatronics 63, 102279 (2019).CrossRefGoogle Scholar
Chen, T., Casas, R. and Lum, P. S., “An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential,” IEEE Trans. Robot. 35(6), 14641474 (2019).CrossRefGoogle ScholarPubMed
Jakob, I., Kollreider, A., Germanotta, M., Benetti, F., Cruciani, A., Padua, L. and Aprile, I., “Robotic and sensor technology for upper limb rehabilitation,” PM&R 10(9), 189197 (2018).Google ScholarPubMed
Islam, M. R., Rahmani, M. and Rahman, M. H., “A novel exoskeleton with fractional sliding mode control for upper limb rehabilitation,” Robotica 38(11), 20992120 (2020).CrossRefGoogle Scholar
Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., Felder, M., Fellinghauer, B., Guidali, M., Kollmar, A., Luft, A., Nef, T., Schuster-Amft, C., Stahel, W. and Riener, R., “Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial,” Lancet Neurol. 13(2), 159166 (2014).CrossRefGoogle ScholarPubMed
Verdel, D., Bastide, S., Vignais, N., Bruneau, O. and Berret, B., “An identification-based method improving the transparency of a robotic upper limb exoskeleton,” Robotica 39(9), 17111728 (2021).CrossRefGoogle Scholar
Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., Vecchi, F. and Carrozza, M. C., “NEUROExos: A powered elbow exoskeleton for physical rehabilitation,” IEEE Trans. Robot. 29(1), 220235 (2013).CrossRefGoogle Scholar