We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Since the rediscovery of brown adipose tissue (BAT) in adult human subjects in 2007, there has been a dramatic resurgence in research interest in its role in heat production and energy balance. This has coincided with a reassessment of the origins of BAT and the suggestion that brown preadipocytes could share a common lineage with skeletal myoblasts. In precocial newborns, such as sheep, the onset of non-shivering thermogenesis through activation of the BAT-specific uncoupling protein 1 (UCP1) is essential for effective adaptation to the cold exposure of the extra-uterine environment. This is mediated by a combination of endocrine adaptations which accompany normal parturition at birth and further endocrine stimulation from the mother's milk. Three distinct adipose depots have been identified in all species studied to date. These contain either primarily white, primarily brown or a mix of brown and white adipocytes. The latter tissue type is present, at least, in the fetus and, thereafter, appears to take on the characteristics of white adipose tissue during postnatal development. It is becoming apparent that a range of organ-specific mechanisms can promote UCP1 expression. They include the liver, heart and skeletal muscle, and involve unique endocrine systems that are stimulated by cold exposure and/or exercise. These multiple pathways that promote BAT function vary with age and between species that may determine the potential to be manipulated in early life. Such interventions could modify, or reverse, the normal ontogenic pathway by which BAT disappears after birth, thereby facilitating BAT thermogenesis through the life cycle.
Symposium 1: Vitamins and cognitive development and performance
70th Anniversary Conference on ‘Vitamins in early development and healthy aging: impact on infectious and chronic disease’
The objective of this review is to provide an overview of nutritional factors involved in cognitive aging and dementia with a focus on nutrients that are also important in neurocognitive development. Several dietary components were targeted, including antioxidant nutrients, dietary fats and B-vitamins. A critical review of the literature on each nutrient group is presented, beginning with laboratory and animal studies of the underlying biological mechanisms, followed by prospective epidemiological studies and randomised clinical trials. The evidence to date is fairly strong for protective associations of vitamin E from food sources, the n-3 fatty acid, DHA, found in fish, a high ratio of polyunsaturated to saturated fats, and vitamin B12 and folate. Attention to the level of nutrient intake is crucial for interpreting the literature and the inconsistencies across studies. Most of the epidemiological studies that observe associations have sufficient numbers of individuals who have both low and adequate nutrient status. Few of the randomised clinical trials are designed to target participants who have low baseline status before randomising to vitamin supplement treatments, and this may have resulted in negative findings. Post-hoc analyses by some of the trials reveal vitamin effects in individuals with low baseline intakes. The field of diet and dementia is a relatively young area of study. Much further work needs to be done to understand dietary determinants of cognitive aging and diseases. Further, these studies must be particularly focused on the levels of nutrient intake or status that confer optimum or suboptimal brain functioning.
Concerns exist about adequacy of vitamin D in pregnant women relative to both maternal and fetal adverse health outcomes. Further contributing to these concerns is the prevalence of inadequate and deficient vitamin D status in pregnant women, which ranges from 5 to 84% globally. Although maternal vitamin D metabolism changes during pregnancy, the mechanisms underlying these changes and the role of vitamin D during development are not well understood. Observational evidence links low maternal vitamin D status with an increased risk of non-bone health outcome in the mother (pre-eclampsia, gestational diabetes, obstructed labour and infectious disease), the fetus (gestational duration) and the older offspring (developmental programming of type 1 diabetes, inflammatory and atopic disorders and schizophrenia); but the totality of the evidence is contradictory (except for maternal infectious disease and offspring inflammatory and atopic disorders), lacking causality and, thus, inconclusive. In addition, recent evidence links not only low but also high maternal vitamin D status with increased risk of small-for-gestational age and schizophrenia in the offspring. Rigorous and well-designed randomised clinical trials need to determine whether vitamin D has a causal role in non-bone health outcomes in pregnancy.
Plenary Lecture I
70th Anniversary Conference on ‘Body weight regulation – food, gut and brain signalling’
Feeding behaviour is crucial for the survival of an organism and is regulated by different brain circuits. Among these circuits the mesolimbic dopamine (DA) system is implicated in the anticipation and motivation for food rewards. This system consists of the dopaminergic neurons in the ventral tegmental area (VTA), and their projections to different cortico-limbic structures such as the nucleus accumbens and medial prefrontal cortex. While the importance of this system in motivational drive for different rewards, including drugs of abuse, has been clearly established, its role in energy balance remains largely unexplored. Evidence suggests that peripheral hormones such as leptin and ghrelin are involved in the anticipation and motivation for food and this might be partially mediated through their effects on the VTA. Yet, it remains to be determined whether these effects are direct effects of ghrelin and leptin onto VTA DA neurons, and to what extent indirect effects through other brain areas contribute. Elucidation of the role of leptin and ghrelin signalling on VTA DA neurons in relation to disruptions of energy balance might provide important insights into the role of this neural circuit in obesity and anorexia nervosa.
The role of vitamin status in the development of the brain and the subsequent functioning of the brain was considered. There are data with a range of vitamins, from animal studies and human studies in developing countries, suggesting that a clinical deficiency during the critical period when the brain is developing causes permanent damage. To date there is, however, with the exception of cases of clinical deficiency such as those that might be associated with a vegan diet, little evidence that variations in the diet of those living in industrialised countries have a lasting developmental influence. Similarly, later in life clinical deficiencies of various vitamins disrupt cognition although there is to date limited evidence that variations in the intake of single vitamins in industrialised societies influence functioning. It may well be, however, unreasonable to expect that vitamins examined in isolation will be associated with differences in cognitive functioning. The output of the brain reflects millions of metabolic processes, each potentially susceptible to any of a range of vitamins. A diet poor in one respect is likely to be poor in other respects as well. As such, the preliminary reports in double-blind placebo-controlled trials that aspects of cognition and behaviour respond to supplementation with multi-micronutrients may indicate the way forward.
Increasing evidence from the EU Project EARNEST and many other investigators demonstrates that early nutrition and lifestyle have long-term effects on later health and the risk of common non-communicable diseases (known as ‘developmental programming’). Because of the increasing public health importance and the transgenerational nature of the problem, obesity and associated disorders are the focus of the new EU funded project ‘EarlyNutrition’. Currently, three key hypotheses have been defined: the fuel mediated ‘in utero’ hypothesis suggests that intrauterine exposure to an excess of fuels, most notably glucose, causes permanent changes of the fetus that lead to obesity in postnatal life; the accelerated postnatal weight gain hypothesis proposes an association between rapid weight gain in infancy and an increased risk of later obesity and adverse outcomes; and the mismatch hypothesis suggests that experiencing a developmental ‘mismatch’ between a sub-optimal perinatal and an obesogenic childhood environment is related to a particular predisposition to obesity and corresponding co-morbidities. Using existing cohort studies, ongoing and novel intervention studies and a basic science programme to investigate those key hypotheses, project EarlyNutrition will provide the scientific foundations for evidence-based recommendations for optimal nutrition considering long-term health outcomes, with a focus on obesity and related disorders. Scientific and technical expertise in placental biology, epigenetics and metabolomics will provide understanding at the cellular and molecular level of the relationships between early life nutritional status and the risk of later adiposity. This will help refine strategies for intervention in early life to prevent obesity.
Symposium 4: Vitamins, infectious and chronic disease during adulthood and aging
70th Anniversary Conference on ‘Vitamins in early development and healthy aging: impact on infectious and chronic disease’
CVD is the most common cause of death in people over 65 years. This review considers the latest evidence for a potential protective effect of C1 donors (folate and the metabolically related B-vitamins) in CVD. Such an effect may or may not be mediated via the role of these nutrients in maintaining plasma homocysteine concentrations within a desirable range. Despite predictions from epidemiological studies that lowering plasma homocysteine would reduce cardiovascular risk, several secondary prevention trials in at-risk patients published since 2004 have failed to demonstrate a benefit of homocysteine-lowering therapy with B-vitamins on CVD events generally. All these trials were performed in CVD patients with advanced disease; thus current evidence suggests that intervention with high-dose folic acid is of no benefit in preventing another event, at least in the case of heart disease. The evidence at this time, however, is stronger for stroke, with meta-analyses of randomised trials showing that folic acid reduces the risk of stroke, particularly in people with no history of stroke. Genetic studies provide convincing evidence to support a causal relationship between sub-optimal B-vitamin status and CVD. People homozygous for the common C677T variant in the gene encoding the folate-metabolising enzyme, methylenetetrahydrofolate reductase (MTHFR), typically have a 14–21% higher risk of CVD. Apart from folate, riboflavin is required as a co-factor for MTHFR. New evidence shows that riboflavin intervention results in marked lowering of blood pressure, specifically in patients with the MTHFR 677TT genotype. This novel gene–nutrient interaction may provide insights as to the mechanism that links C1 metabolism with CVD outcomes.
Symposium I: Food–gut interactions
70th Anniversary Conference on ‘Body weight regulation – food, gut and brain signalling’
Recent advances highlight that nutrient receptors (such as T1R1/T1R3 heterodimer, Ca sensing receptor and GPR93 for amino acids and protein, GPR40, GPR41, GPR43 and GPR120 for fatty acids, T1R2/T1R3 heterodimer for monosaccharides) are expressed in the apical face of the gut and sense nutrients in the lumen. They transduce signals for the regulation of nutrient transporter expressions in the apical face. Interestingly, they are also localised in enteroendocrine cells (EEC) and mainly exert a direct control on the secretion in the lamina propria of gastro-intestinal peptides such as cholecystokinin, glucagon-like peptide-1 and peptide YY in response to energy nutrient transit and absorption in the gut. This informs central nuclei involved in the control of feeding such as the hypothalamus and nucleus of the solitary tract of the availability of these nutrients and thus triggers adaptive responses to maintain energy homoeostasis. These nutrient receptors then have a prominent position since they manage nutrient absorption and are principally the generator of the first signal of satiation mechanisms mainly transmitted to the brain by vagal afferents. Moreover, tastants are also able to elicit gut peptides secretion via chemosensory receptors expressed in EEC. Targeting these nutrient and tastant receptors in EEC may thus be helpful to promote satiation and so to fight overfeeding and its consequences.
Hormones from the gastrointestinal (GI) tract are released following food ingestion and trigger a range of physiological responses including the coordination of appetite and glucose homoeostasis. The aim of this review is to discuss the pathways by which food ingestion triggers secretion of cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) and the altered patterns of gut hormone release observed following gastric bypass surgery. Our understanding of how ingested nutrients trigger secretion of these gut hormones has increased dramatically, as a result of physiological studies in human subjects and animal models and in vitro studies on cell lines and primary intestinal cultures. Specialised enteroendocrine cells located within the gut epithelium are capable of directly detecting a range of nutrient stimuli through a range of receptors and transporters. It is concluded that the arrival of nutrients at the apical surface of enteroendocrine cells is a major stimulus for gut hormone release, thereby coupling these endocrine signals to the arrival of absorbed nutrients in the bloodstream.
Session II: Metabolic flexibility and regulation
Symposium on ‘Metabolic flexibility in animal and human nutrition’
Dieting makes you fat – the title of a book published in 1983 – embodies the notion that dieting to control body weight predisposes the individual to acquire even more body fat. While this notion is controversial, its debate underscores the large gap that exists in our understanding of basic physiological laws that govern the regulation of human body composition. A striking example is the key role attributed to adipokines as feedback signals between adipose tissue depletion and compensatory increases in food intake. Yet, the relative importance of fat depletion per se as a determinant of post-dieting hyperphagia is unknown. On the other hand, the question of whether the depletion of lean tissues can provide feedback signals on the hunger–appetite drive is rarely invoked, despite evidence that food intake during growth is dominated by the impetus for lean tissue deposition, amidst proposals for the existence of protein–static mechanisms for the regulation of growth and maintenance of lean body mass. In fact, a feedback loop between fat depletion and food intake cannot explain why human subjects recovering from starvation continue to overeat well after body fat has been restored to pre-starvation values, thereby contributing to ‘fat overshooting’. In addressing the plausibility and mechanistic basis by which dieting may predispose to increased fatness, this paper integrates the results derived from re-analysis of classic longitudinal studies of human starvation and refeeding. These suggest that feedback signals from both fat and lean tissues contribute to recovering body weight through effects on energy intake and thermogenesis, and that a faster rate of fat recovery relative to lean tissue recovery is a central outcome of body composition autoregulation that drives fat overshooting. A main implication of these findings is that the risk of becoming fatter in response to dieting is greater in lean than in obese individuals.
Symposium 2: Vitamins in muscular and skeletal function
70th Anniversary Conference on ‘Vitamins in early development and healthy aging: impact on infectious and chronic disease’
This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.
Symposium 1: Food chain and health
70th Anniversary Conference on ‘From plough through practice to policy’
Recent global fluctuations in food prices and continuing environmental degradation highlight the future challenge of feeding a growing world population. However, current dialogues rarely address the relationship between agricultural changes and health. This relationship is traditionally associated with the role of food in nutrition and with food safety, and while these are key interactions, we show in this paper that the relationship is far more complex and interesting. Besides the direct effects of agriculture on population nutrition, agriculture also influences health through its impact on household incomes, economies and the environment. These effects are felt particularly in low- and middle-income countries, where dramatic changes are affecting the agriculture–health relationship, in particular the growth of nutrition-related chronic disease and the associated double burden of under- and over-nutrition. Greater understanding of the negative effects of agriculture on health is also needed. While lengthening food value chains make the chain of influence between agricultural policy, food consumption, nutrition and health more complex, there remain opportunities to improve health by changing agricultural systems. The first challenge in doing this, we suggest, is to improve our capacity to measure the impact of agricultural interventions on health outcomes, and vice versa.