Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-12T20:04:49.179Z Has data issue: false hasContentIssue false

A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems – CORRIGENDUM

Published online by Cambridge University Press:  01 September 2023

Rights & Permissions [Opens in a new window]

Abstract

This is a corrigendum to the paper ‘A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems’ [3]. Theorem 7.1 in that paper is incorrect as stated, and the error originates with Proposition 7.5, part (iii), which was incorrectly quoted from a paper by Bergelson, Host, and Kra [1]. Consequently, this invalidates the proof of Theorem 4.2, which was used in the proofs of the main results in [3]. In this corrigendum we fix the problem by establishing a slightly weaker version of Theorem 7.1 (see §2 below) and use it to give a new proof of Theorem 4.2 (see §3 below). This ensures that all main results in [3] remain correct. We thank Zhengxing Lian and Jiahao Qiu for bringing this mistake to our attention.

Type
Corrigendum
Copyright
© The Author(s), 2023. Published by Cambridge University Press

1 A counterexample to [Reference Moreira and Richter3, Theorem 7.1]

We begin by presenting the counterexample to [Reference Moreira and Richter3, Theorem 7.1] provided to us by Zhengxing Lian and Jiahao Qiu. We will use common terminology about nilmanifolds and nilsystems as reviewed in [Reference Moreira and Richter3, §3].

Theorem 7.1. (From [Reference Moreira and Richter3])

Let $k\in {\mathbb {N}}$ , let X be a connected nilmanifold and let ${R:X\to X}$ be an ergodic nilrotation. Define $S:= R\times R^2\times \cdots \times R^k$ and

(1.1) $$ \begin{align} Y_x:=\overline{\{S^n(x,x,\ldots, x): n\in\mathbb{Z}\}} \subseteq X^{k}. \end{align} $$

For almost every $x\in X$ , $\sigma (Y_x, S)=\sigma (X,R)$ .

Counterexample. Let $k=2$ and let $(X,R)$ be the skew-product system given by $R:(x,y)\mapsto (x+\alpha ,y+x)$ on $\mathbb {T}^2$ for some irrational $\alpha $ . This system can be realized as an ergodic nilsystem (see [Reference Moreira and Richter3, Example 7.2]). For any point $(x,y)\in X$ let $Y_{(x,y)}$ be the orbit closure of the diagonal point $(x,y,x,y)\in X^2$ under the map $S=R\times R^2$ . Then

$$ \begin{align*} Y_{(x,y)} &= \overline{\bigg\{\bigg(x+n\alpha,y+nx+\binom n2\alpha,x+2n\alpha,y+2nx+\binom{2n}2\alpha\bigg):n\in{\mathbb{N}}\bigg\}} \\[4pt]&= (x,y,x,y)+\overline{\bigg\{\bigg(n\alpha,nx+\binom n2\alpha,2n\alpha,2nx+4\binom n2\alpha-n\alpha\bigg):n\in{\mathbb{N}}\bigg\}}. \end{align*} $$

If $x,\alpha ,1$ are linearly independent over $\mathbb {Q}$ (which happens almost surely) then it follows that

(1.2) $$ \begin{align} Y_{(x,y)}=(x,y,x,y)+\{(z,w,2z,\tilde w):z,w,\tilde w\in\mathbb{T}\}. \end{align} $$

Therefore the nilsystem $(Y_{(x,y)},S)$ is isomorphic to the nilsystem $(\mathbb {T}^3,\tau _{x})$ , where $\tau _{x}(z,w,\tilde w)=(z+\alpha ,w+z+x,\tilde w+4z+2x+\alpha )$ . Consider the function $f:\mathbb {T}^3\to \mathbb {C}$ described by $f(z,w,\tilde w)=e(\tilde w-4w)$ , where $e(z):=e^{2\pi iz}$ . Then

$$ \begin{align*}f(\tau_x(z,w,\tilde w))=e((\tilde w+4z+2x+\alpha)-4(w+z+x))=e(\alpha-2x)f(z,w,\tilde w).\end{align*} $$

This shows that $\alpha -2x$ is an eigenvalue of the system $(Y_{(x,y)},S)$ , but not of the system $(X,R)$ , so $\sigma (Y_{(x,y)},R\times T^2)\not \subseteq \sigma (X,S)$ for almost every $(x,y)\in X$ .

2 Revised version of [Reference Moreira and Richter3, Theorem 7.1]

The above example shows that [Reference Moreira and Richter3, Theorem 7.1] is not correct as stated. Here is a corrected version.

Revised Theorem 7.1. Let $k\in {\mathbb {N}}$ , let X be a connected nilmanifold and let $R:X\to X$ be an ergodic nilrotation. Define $S:= R\times R^2\times \cdots \times R^k$ and

(2.1) $$ \begin{align} Y_x:=\overline{\{S^n(x,x,\ldots, x): n\in\mathbb{Z}\}} \subseteq X^{k}. \end{align} $$

For any $\theta \in [0,1)$ , if $\theta \notin \sigma (X,R)$ then for almost every $x\in X$ we have $\theta \notin \sigma (Y_x, S)$ .

Remark 2.1. The difference between the (incorrect) statement of Theorem 7.1 in [Reference Moreira and Richter3] and the (correct) statement of Revised Theorem 7.1 above is that

$$ \begin{align*} \text{`for almost every }x\in X\text{ and all }\theta\notin\sigma(X,R)\text{ one has } \theta \notin \sigma(Y_x, S)' \end{align*} $$

has been replaced with

$$ \begin{align*} \text{`for all }\theta\notin\sigma(X,R)\text{ and almost all }x\in X\text{ one has }\theta \notin \sigma(Y_x, S)'. \end{align*} $$

In other words, the full measure set of x is now allowed to depend on $\theta $ .

Proof of Revised Theorem 7.1

Given a nilpotent Lie group G, denote by $G=G_1 \trianglerighteq G_2\trianglerighteq \cdots \trianglerighteq G_{s}\trianglerighteq \{1_G\}$ its lower central series. For $k\in {\mathbb {N}}$ , define $H^{(1)}(G),\ldots , H^{(k-1)}(G)$ as

(2.2) $$ \begin{align} H^{(i)}(G):=\{ (g^{\binom{1}{i}}, g^{\binom{2}{i}},\ldots,g^{\binom{k}{i}}): g\in G_i\}\subseteq G^k, \end{align} $$

where $\binom {j}{i}=0$ for $j<i$ , and let $H(G)$ be given by

(2.3) $$ \begin{align} H(G):= H^{(1)}(G) H^{(2)}(G)\cdots H^{(k-1)}(G) G_k^k. \end{align} $$

Also, for a co-compact lattice $\Gamma \subset G$ define $\Delta (G,\Gamma ):=H(G)\cap \Gamma ^k$ . Since $H(G)$ is a rational subgroup of $G^k$ , it follows from [Reference Leibman2, Lemma 1.11] that $\Delta (G,\Gamma )$ is a uniform and discrete subgroup of $H(G)$ . Define the nilmanifold $Y(G,\Gamma ):=H(G)/\Delta (G,\Gamma )$ . Note that we can naturally identify $Y(G,\Gamma )$ with a subnilmanifold of $(G/\Gamma )^k$ .

For $b\in G$ , define $R_b:G/\Gamma \to G/\Gamma $ to be the map $R_b(g\Gamma )=(bg)\Gamma $ and let

(2.4) $$ \begin{align} S_b:= R_b\times R_b^2\times \cdots\times R_b^k. \end{align} $$

For $x=g\Gamma \in G/\Gamma $ define

(2.5) $$ \begin{align} Y_x:=\overline{\{S_b^n(x,x,\ldots, x): n\in\mathbb{Z}\}}\subseteq (G/\Gamma)^k. \end{align} $$

It was shown in [Reference Moreira and Richter3, Proposition 7.5, part (iv)] that for almost every $x=g\Gamma \in G/\Gamma $ the map $R_{g^{-1}}\times \cdots \times R_{g^{-1}}: (G/\Gamma )^k\to (G/\Gamma )^k$ is an isomorphism from the nilsystem $(Y_x, S_a)$ to the nilsystem $(Y(G,\Gamma ),S_{g^{-1}ag})$ .

Suppose now that $X=G/\Gamma $ is the system in the statement of the theorem and let $a\in ~G$ be such that $R=R_a$ . Take $\theta \in [0,1)$ . Our goal is to show that if $\theta \notin \sigma (X,R)$ then ${\theta \notin \sigma (Y_x, S_a)}$ for almost every $x\in X$ . Let us first deal with the case when $\theta $ is irrational.

Observe that $\theta $ is not an eigenvalue of $(X,R_a)$ if and only if the product system $(X, R_a)\times (\mathbb {T},R_{\theta })$ is ergodic, where $R_{\theta }\colon t\mapsto t+\theta $ is rotation by $\theta $ . Notice that ${X\times \mathbb {T}=(G\times \mathbb {R})/(\Gamma \times \mathbb {Z})}$ is a nilmanifold too, and hence $(X, R_a)\times (\mathbb {T},R_{\theta })$ is a nilsystem. In accordance with (2.4) and (2.5) let

$$ \begin{align*} S_{(a,\theta)}=(R_a\times R_\theta)\times(R_a^2\times R_{2\theta})\times\cdots\times(R_a^k\times R_{k\theta}) \end{align*} $$

and

$$ \begin{align*} Y_{(x,t)}:=\overline{\{S_{(a,\theta)}^n((x,t),\ldots, (x,t)): n\in\mathbb{Z}\}}\subseteq (X\times\mathbb{T})^k. \end{align*} $$

As was mentioned above, for almost every $(x,t)=(g\Gamma ,t)\in X\times \mathbb {T}$ , the nilsystem $(Y_{(x,t)},S_{(a,\alpha )})$ is isomorphic to $(Y(G\times \mathbb {R},\Gamma \times \mathbb {Z}),S_{(g^{-1}ag,\theta )})$ .

We claim that $Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$ . Assuming this claim for now, it follows that

$$ \begin{align*} (Y_{(x,t)},S_{(a,\theta)})&\cong (Y(G\times\mathbb{R},\Gamma\times\mathbb{Z}),S_{(g^{-1}ag,\theta)}) \\ &\cong(Y(G,\Gamma),S_{g^{-1}ag})\times ( Y(\mathbb{R},\mathbb{Z}), S_\theta) \\ &\cong (Y(G,\Gamma),S_{g^{-1}ag})\times (\mathbb{T},R_\theta) \\ &\cong (Y_x,S_{a})\times (\mathbb{T},R_\theta). \end{align*} $$

Recall that any transitive nilsystem is ergodic. Since $(Y_{(x,t)},S_{(a,\theta )})$ is transitive by definition, it follows that it is ergodic, which implies that $(Y_x,S_{a})\times (\mathbb {T},R_\theta )$ is ergodic for almost every $x\in X$ . However, $(Y_x,S_{a})\times (\mathbb {T},R_\theta )$ can only be ergodic if $\theta $ is not in the discrete spectrum of $(Y_x,S_{a})$ , which finishes the proof that $\theta \notin \sigma (Y_x, S_a)$ for almost every $x\in X$ .

It remains to show that $Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$ . Note that ${{H^{(i)}(\mathbb {R})=\{0\}^k}}$ for all $i\geq 2$ , so that $H(\mathbb {R})=\{(t,2t,\ldots ,kt):t\in \mathbb {R}\}$ . More generally, for any G we have $H^{(i)}(G\times \mathbb {R})=H^{(i)}(G)\times \{0\}^k$ whenever $i\geq 2$ . This implies that

$$ \begin{align*}H(G\times\mathbb{R})=H(G)\times H(\mathbb{R}).\end{align*} $$

Finally, since

$$ \begin{align*} \Delta(G\times\mathbb{R},\Gamma\times\mathbb{Z}) &= (H(G)\times H(\mathbb{R}))\cap(\Gamma^k\times\mathbb{Z}^k) \\&= H(G)\cap\Gamma^k\times H(\mathbb{R})\cap\mathbb{Z}^k \\&= \Delta(G,\Gamma)\times\Delta(\mathbb{R},\mathbb{Z}), \end{align*} $$

the claim $Y(G\times \mathbb {R},\Gamma \times \mathbb {Z})\cong Y(G,\Gamma )\times Y(\mathbb {R},\Gamma )$ follows.

Lastly, we deal with the case when $\theta =p/q\in (0,1)$ is rational. Recall that $S_a= R_a\times R_a^2\times \cdots \times R_a^k$ and $Y_x:=\overline {\{S_a^n(x,x,\ldots , x): n\in \mathbb {Z}\}}$ and that

(2.6) $$ \begin{align} (Y_x, S_a)\cong (Y(G,\Gamma), S_{g^{-1}ag}) \end{align} $$

for all $x=g\Gamma \in X'$ , where $X'$ is some full measure subset of X. Observe that (2.6) implies

(2.7) $$ \begin{align} (Y_x, S_a^q)\cong (Y(G,\Gamma), S_{g^{-1}ag}^q), \end{align} $$

for all $x=g\Gamma \in X'$ . Then define

$$ \begin{align*} Y_x^{(q)}:=\overline{\{S_a^{qn}(x,x,\ldots, x): n\in\mathbb{Z}\}}=\overline{\{S_{a^q}^{n}(x,x,\ldots, x): n\in\mathbb{Z}\}}. \end{align*} $$

Since X is connected and $(X, R_a)$ is ergodic, the nilsystem $(X, R_{a}^q)$ is ergodic. This implies that there exists a full measure set $X"\subset X$ such that for all $x=g\Gamma \in X"$ we have

(2.8) $$ \begin{align} (Y_x^{(q)}, S_a^q)\cong (Y(G,\Gamma), S_{g^{-1}ag}^q). \end{align} $$

Combining (2.7) and (2.8), we see that for any $x\in X'\cap X"$ we have

$$ \begin{align*} (Y_x, S_a^q)\cong (Y_x^{(q)}, S_a^q). \end{align*} $$

Since $(Y_x^{(q)}, S_a^q)$ is transitive by definition, it must be ergodic, and thus it follows that for all $x\in X'\cap X"$ the system $(Y_x, S_a^q)$ is ergodic. We conclude that $\theta =p/q$ is not an eigenvalue of $(Y_x, S_a^q)$ and this finishes the proof.

3 Revised proof of [Reference Moreira and Richter3, Theorem 4.2]

In light of the fact that [Reference Moreira and Richter3, Theorem 7.1] is incorrect, we need to provide a new proof for [Reference Moreira and Richter3, Theorem 4.2] to ensure that all the main results presented in [Reference Moreira and Richter3] are still correct. With the same notation as in [Reference Moreira and Richter3], let us recall the statement of [Reference Moreira and Richter3, Theorem 4.2].

Theorem 4.2. Let $k\in {\mathbb {N}}$ , let G be an s-step nilpotent Lie group, and let $\Gamma $ be a uniform and discrete subgroup of G such that $X=G/\Gamma $ is a connected nilmanifold. Let ${R:X\to X}$ be an ergodic niltranslation on X. Define $S:= R\times R^2\times \cdots \times R^k$ and

$$ \begin{align*} Y_{X^\Delta}:=\overline{\{S^n(x,x,\ldots, x): x\in X,~n\in\mathbb{Z}\}}\subseteq X^{k}. \end{align*} $$

Then $\sigma (X,R)=\sigma (Y_{X^\Delta }, S)$ , where $\sigma (X,R)$ denotes the spectrum of the nilsystem $(X,R)$ and $\sigma (Y_{X^\Delta }, S)$ denotes the spectrum of the nilsystem $(Y_{X^\Delta }, S)$ .

Proof. Given $\theta \in \sigma (X,R)$ , let $f\in L^2(X)$ be an eigenfunction of the system $(X,R)$ with eigenvalue $\theta $ . Since the function $\tilde f\in L^2(Y_{X^\Delta })$ defined by $\tilde f(x_1,\ldots ,x_k)=f(x_1)$ is an eigenfunction for the system $(Y_{X^\Delta },S)$ with eigenvalue $\theta $ , it follows that $\sigma (X,R)\subseteq \sigma (Y_{X^\Delta },S)$ .

Next we prove the converse inclusion. Let $\nu $ be the Haar measure of the nilmanifold $Y_{X^\Delta }$ and let $\nu _x$ be the Haar measure of the nilmanifold $Y_x$ defined by (2.1). Observe that the sets $Y_x$ are precisely the atoms of the invariant $\sigma $ -algebra of the system $(Y_{X^\Delta },S)$ . Therefore, the measures $\nu _x$ form the ergodic decomposition of $\nu $ .

Let $\theta \in \sigma (Y_{X^\Delta },S)$ and let $f\in L^2(Y_{X^\Delta },\nu )$ be an eigenfunction with eigenvalue $\theta $ , that is, for almost every $y\in Y_{X^\Delta }$ we have $Sf(y)=e(\theta )f(y)$ . Since f cannot be $0 \nu $ -almost everywhere, there exists a positive measure set of $x\in X$ for which the restriction of f to the system $(Y_x,\nu _x,S)$ is not the zero function. But for any such x, the restriction of f to the system $(Y_x,\nu _x,S)$ is an eigenfunction with eigenvalue $\theta $ . This implies that $\theta \in \sigma (Y_{X^\Delta },S)$ for all such x. Finally, by invoking Revised Theorem 7.1, we conclude that $\theta \in \sigma (X,R)$ , finishing the proof.

References

Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences. Invent. Math. 160 (2005), 261303. With an appendix by I. Ruzsa.CrossRefGoogle Scholar
Leibman, A.. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. & Dynam. Sys. 26 (2006), 7877098.CrossRefGoogle Scholar
Moreira, J. and Richter, F. K.. A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems. Ergod. Th. & Dynam. Sys. 39 (2019), 10421070.CrossRefGoogle Scholar