Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-20T10:16:47.382Z Has data issue: false hasContentIssue false

Cyclic orders and graphs of groups

Published online by Cambridge University Press:  21 October 2024

Harrison J. McDonough
Affiliation:
Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
Daniel T. Wise*
Affiliation:
Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
*
Corresponding author: Daniel T. Wise, email: [email protected]

Abstract

We examine a cyclic order on the directed edges of a tree whose vertices have cyclically ordered links. We use it to show that a graph of groups with left-cyclically ordered vertex groups and convex left-ordered edge groups is left-cyclically orderable.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bell, J., Clay, A. and Ghaswala, T.. Promoting circular-orderability to left-orderability, 2020.CrossRefGoogle Scholar
Baik, H. and Samperton, E.. Spaces of invariant circular orders of groups. Groups Geom. Dyn., 12(2):721763, 2018.CrossRefGoogle Scholar
Calegari, D.. Circular groups, planar groups, and the Euler class. In Proceedings of the Casson Fest, volume 7 of Geom. Topol. Monogr., pp. 431491. Geom. Topol. Publ., Coventry, 2004.CrossRefGoogle Scholar
Calegari, D.. Foliations and the geometry of 3-manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2007.Google Scholar
Clay, A. and Ghaswala, T.. Free products of circularly ordered groups with amalgamated subgroup. J. Lond. Math. Soc. (2), 100(3):775803, 2019.CrossRefGoogle Scholar
Chiswell, I.M.. Right orderability and graphs of groups. J. Group Theory. 2011.CrossRefGoogle Scholar
Clay, A., Mann, K. and Rivas, C.. On the number of circular orders on a group. J. Algebra, 504:336363, 2018.CrossRefGoogle Scholar
Deroin, B., Navas, A. and Rivas, C.. Groups, orders, and dynamics. 2016.Google Scholar
Dicks, W. and Šunić, Z.. Orders on trees and free products of left-ordered groups. Canad. Math. Bull., 63(2):335347, 2020.CrossRefGoogle Scholar
Ghys, É.. Groups acting on the circle. Enseign. Math. (2), 47(3-4):329–407, 2001.Google Scholar
Mann, K. and Rivas, C.. Group orderings, dynamics, and rigidity. Ann. Inst. Fourier (Grenoble), 68(4):13991445, 2018.CrossRefGoogle Scholar