Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-25T13:55:52.308Z Has data issue: false hasContentIssue false

Intranight optical monitoring of the rare quasar J0950+5128, the brightest known candidate for transition from radio-quiet to radio-loud state

Published online by Cambridge University Press:  16 December 2024

Krishan Chand*
Affiliation:
Department of Physics and Astronomical Science, Central University of Himachal Pradesh (CUHP), Dharamshala 176215, India
Gopal-Krishna
Affiliation:
UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098, India
Hum Chand
Affiliation:
Department of Physics and Astronomical Science, Central University of Himachal Pradesh (CUHP), Dharamshala 176215, India
*
Corresponding author: Krishan Chand; Email: krishanchand.kc007@gmail.com

Abstract

We report a novel pilot project to characterise intra-night optical variability (INOV) of an extremely rare type of quasar, which has recently been caught in the act of transiting from a radio-quiet to radio-loud state, on a decadal time scale. Such rare transitions may signify a recurrence, or conceivably the first switch-on of jet activity in optically luminous quasars. The newly formed jet could well be jittery and unsteady, both in power and direction. The optically brightest among such radio-state transition candidates, the quasar J0950+5128 ($z = 0.2142$), was monitored by us with dense sampling in the R-band, during 2020-21 in 6 sessions, each lasting $ \gt $ 4 hours. This is the first attempt to characterise the INOV properties associated with this recently discovered, extremely rarely observed phenomenon of quasar radio-state transition. The non-detection of INOV in any of the 6 sessions, down to the 1-2% level, amounts to a lack of evidence for a blazar-like optical activity, $\sim$ 2 years after its transition to radio-loud state was found. The only INOV feature detected in J0950+5128 during our observational campaign was a $\sim$ 0.15-mag spike lasting < 6 minutes, seen at 13.97 UT on 18-March-2021. We also report the available optical light curves of this quasar from the Zwicky Transient Facility survey, which indicate that it had experienced a phase of INOV activity around the time its transition to the radio-loud state was detected, however that phase did not sustain until the launch of our INOV campaign $\sim$ 2 years later.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdo, A. A., Ackermann, M., Ajello, M., et al., 2009, ApJ, 699, 976Google Scholar
An, T., & Baan, W. A. 2012, ApJ, 760, 77Google Scholar
Arévalo, P., Lira, P., Sánchez-Sáez, P., et al. 2023, MNRAS, 526, 6078Google Scholar
Bachev, R., Strigachev, A., & Semkov, E. 2005, MNRAS, 358, 774Google Scholar
Bannister, K. W., Murphy, T., Gaensler, B. M., Hunstead, R. W., & Chatterjee, S. 2011a, MNRAS, 412, 634Google Scholar
Bannister, K. W., Murphy, T., Gaensler, B. M., Hunstead, R. W., & Chatterjee, S. 2011b, MNRAS, 418, 2813Google Scholar
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559CrossRefGoogle Scholar
Berton, M., Järvelä, E., Crepaldi, L., et al. 2020, A&A, 636, A64CrossRefGoogle Scholar
Britzen, S., Krishna, G., Kun, E., et al. 2023a, Universe, 9, 115Google Scholar
Britzen, S., Zajaček, M., Gopal-Krishna, et al. 2023b, ApJ, 951, 106Google Scholar
Caplar, N., Lilly, S. J., & Trakhtenbrot, B. 2017, ApJ, 834, 111Google Scholar
Chand, K., & Gopal-Krishna. 2022, MNRAS, 516, L18Google Scholar
Chand, K., Gopal-Krishna, Omar, A., et al. 2022, MNRAS, 511, 13Google Scholar
Chand, K., Gopal-Krishna, Omar, A., Chand, H., & Bisht, P. S. 2023, PASA, 40, e006Google Scholar
Chini, R., Biermann, P. L., Kreysa, E., & Gemuend, H. P. 1989, A&A, 221, L3Google Scholar
Czerny, B., Siemiginowska, A., Janiuk, A., Nikiel-Wroczyński, B., & Stawarz, Ł. 2009, ApJ, 698, 840Google Scholar
de Diego, J. A. 2010, AJ, 139, 1269Google Scholar
Garcia, A., Sodré, L., Jablonski, F. J., & Terlevich, R. J. 1999, MNRAS, 309, 803Google Scholar
Gopal-Krishna, Sagar, R., & Wiita, P. J. 1995, MNRAS, 274, 701Google Scholar
Gopal-Krishna, Gupta, A. C., Sagar, R., et al. 2000, MNRAS, 314, 815CrossRefGoogle Scholar
Gopal-Krishna, & Wiita, P. J. 2018, Bull. Soc. R. Sci. Liege., 87, 281Google Scholar
Gopal-Krishna, Chand, K., Chand, H., et al. 2023, MNRAS, 518, L13Google Scholar
Goyal, A., Gopal-Krishna, Wiita, P. J., et al. 2012, A&A, 544, A37CrossRefGoogle Scholar
Goyal, A., Gopal-Krishna, Wiita, P. J., Stalin, C. S., & Sagar, R. 2013a, MNRAS, 435, 1300CrossRefGoogle Scholar
Goyal, A., Mhaskey, M., Gopal-Krishna, et al. 2013b, JApA, 34, 273CrossRefGoogle Scholar
Gugliucci, N. E., Taylor, G. B., Peck, A. B., & Giroletti, M. 2005, ApJ, 622, 136CrossRefGoogle Scholar
Järvelä, E., Savolainen, T., Berton, M., et al. 2024, MNRAS, 532, 3069CrossRefGoogle Scholar
Jeyakumar, S. 2016, MNRAS, 458, 3786CrossRefGoogle Scholar
Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195CrossRefGoogle Scholar
Kshama, S. K., Paliya, V. S., & Stalin, C. S. 2017, MNRAS, 466, 2679CrossRefGoogle Scholar
Kunert-Bajraszewska, M., Wołowska, A., Mooley, K., Kharb, P., & Hallinan, G. 2020, ApJ, 897, 128CrossRefGoogle Scholar
Lacy, M., Baum, S. A., Chandler, C. J., et al. 2020, PASP, 132, 035001Google Scholar
Lähteenmäki, A., Järvelä, E., Ramakrishnan, V., et al. 2018, A&A, 614, L1CrossRefGoogle Scholar
Lalakos, A., Gottlieb, O., Kaaz, N., et al. 2022, ApJ, 936, L5CrossRefGoogle Scholar
Liu, H., Wang, J., Mao, Y., & Wei, J. 2010, ApJ, 715, L113CrossRefGoogle Scholar
MacLeod, C. L., Ivezić, Ž., Sesar, B., et al. 2012, ApJ, 753, 106CrossRefGoogle Scholar
Mathur, S. 2000, MNRAS, 314, L17CrossRefGoogle Scholar
Mirabel, I. F., & Rodrguez, L. F. 1999, ARA&A, 37, 409CrossRefGoogle Scholar
Mishra, S., Gopal-Krishna, Chand, H., Chand, K., & Ojha, V. 2019, MNRAS, 489, L42Google Scholar
Mishra, S., Gopal-Krishna, Chand, H., et al. 2021, MNRAS, 507, L46 Google Scholar
Mooley, K. P., Hallinan, G., Bourke, S., et al. 2016, ApJ, 818, 105CrossRefGoogle Scholar
Negi, V., Gopal-Krishna, Chand, H., & Britzen, S. 2023, MNRAS, 524, L66Google Scholar
Nyland, K., Dong, D. Z., Patil, P., et al. 2020, ApJ, 905, 74CrossRefGoogle Scholar
O’Dea, C. P. 1998, PASP, 110, 493CrossRefGoogle Scholar
Ojha, V., Chand, H., & Gopal-Krishna. 2021, MNRAS, 501, 4110Google Scholar
Orienti, M., & Dallacasa, D. 2021, Astronomische Nachrichten, 342, 1151Google Scholar
Owsianik, I., & Conway, J. E. 1998, A&A, 337, 69Google Scholar
Owsianik, I., Conway, J. E., & Polatidis, A. G. 1998, A&A, 336, L37Google Scholar
Padovani, P. 2017, Nature Astronomy, 1, 0194Google Scholar
Paliya, V. S. 2019, Journal of Astrophysics and Astronomy, 40, 39Google Scholar
Paliya, V. S., Stalin, C. S., Kumar, B., et al. 2013, MNRAS, 428, 2450CrossRefGoogle Scholar
Raiteri, C. M., Villata, M., Acosta-Pulido, J. A., et al. 2017, Nature, 552, 374Google Scholar
Reynolds, C. S., & Begelman, M. C. 1997, ApJ, 487, L135CrossRefGoogle Scholar
Sagar, R., Stalin, C. S., Gopal-Krishna, & Wiita, P. J. 2004, MNRAS, 348, 176CrossRefGoogle Scholar
Sagar, R., Omar, A., Kumar, B., et al. 2011, Current Science, 101, 1020Google Scholar
Stalin, C. S., Gopal-Krishna, Sagar, R., & Wiita, P. J. 2004, MNRAS, 350, 175CrossRefGoogle Scholar
Stetson, P. B. 1987, PASP, 99, 191CrossRefGoogle Scholar
Stetson, P. B. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 25, Astronomical Data Analysis Software and Systems I, ed. Worrall, D. M., Biemesderfer, C., & Barnes, J., 297Google Scholar
Stone, Z., Shen, Y., Burke, C. J., et al. 2022, MNRAS, 514, 164Google Scholar
Sun, M., Xue, Y., Wang, J., Cai, Z., & Guo, H. 2018, ApJ, 866, 74CrossRefGoogle Scholar
Takalo, L. O. 1994, Vistas in Astronomy, 38, 77Google Scholar
Trakhtenbrot, B., Arcavi, I., MacLeod, C. L., et al. 2019, ApJ, 883, 94CrossRefGoogle Scholar
Webb, J. R., & Smith, A. G. 1989, A&A, 220, 65Google Scholar
Wójtowicz, A., Stawarz, ł., Cheung, C. C., et al. 2020, ApJ, 892, 116CrossRefGoogle Scholar