Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T18:07:26.628Z Has data issue: false hasContentIssue false

Convergence to a self-similar solution for a one-phase Stefan problem arising in corrosion theory

Published online by Cambridge University Press:  09 August 2022

M. BOUGUEZZI
Affiliation:
Université Paris-Saclay, CEA, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, Gif-sur-Yvette 91191, France email: [email protected] CNRS and Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, Orsay 91405, France email: [email protected]
D. HILHORST
Affiliation:
CNRS and Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, Orsay 91405, France email: [email protected]
Y. MIYAMOTO
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 Japan email: [email protected]
J.-F. SCHEID
Affiliation:
Université de Lorraine, CNRS, Inria, IECL, Nancy F-54000, France email: [email protected]

Abstract

Steel corrosion plays a central role in different technological fields. In this article, we consider a simple case of a corrosion phenomenon which describes a pure iron dissolution in sodium chloride. This article is devoted to prove rigorously that under rather general hypotheses on the initial data, the solution of this iron dissolution model converges to a self-similar profile as $t\rightarrow +\infty$. We will do so for an equivalent formulation as presented in the book of Avner Friedman about parabolic equations (Friedman (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ.). In order to prove the convergence result, we apply a comparison principle together with suitable upper and lower solutions.

Type
Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiki, T. & Muntean, A. (2012) A free-boundary problem for concrete carbonation: front nucleation and rigorous justification of the $\sqrt{t}$ -law of propagation. Interfaces Free Boundaries 15, 167180.CrossRefGoogle Scholar
Aiki, T. & Muntean, A. (2013) Large-time asymptotics of moving-reaction interfaces involving nonlinear Henry’s law and time-dependent Dirichlet data. Nonlinear Anal. Theory Methods Appl. 93, 314.CrossRefGoogle Scholar
Brochet, D., Hilhorst, D. & Chen, X. (1993) Finite dimensional exponential attractor for the phase field model. Appl. Anal. 49(3–4), 197212.CrossRefGoogle Scholar
Du, Y. & Lin, Z. (2010) Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42(1), 377405.CrossRefGoogle Scholar
Du, Y. & Lou, B. (2015) Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. 17(10), 26732724.CrossRefGoogle Scholar
Fasano, A. & Primicerio, M. (1977) General free-boundary problems for the heat equation. J. Math. Anal. Appl. Part 1: 57(3), 694–723; Part 2: 58(1), 202–231, 1977; Part 3: 59(1), 1–14, 1977.Google Scholar
Friedman, A. (1976) Analyticity of the free boundary for the Stefan problem. Archiv. Ration. Mech. Anal. 61(2), 97125.CrossRefGoogle Scholar
Friedman, A. (1959) Free boundary problems for parabolic equations I. melting of solids. J. Math. Mech. 8, 499517.Google Scholar
Friedman, A. (1964) Partial Differential Equations of Parabolic Type. Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
Hilhorst, D. & Hulshof, J. (1994) A free boundary focusing problem. Proc. Am. Math. Soc. 121(4), 11931202.CrossRefGoogle Scholar
Lamé, G. & Clapeyron, B. P. (1831) Mémoire sur la solidification par refroidissement d’un globe liquide. Annales Chimie Physique 47, 250256.Google Scholar
Lieberman, G. M. (1996) Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ.CrossRefGoogle Scholar
Meirmanov, A. M. (1992) The Stefan Problem, vol. 3, Walter de Gruyter, Berlin.CrossRefGoogle Scholar
Ricci, R. & Xie, W. (1991) On the stability of some solutions of the Stefan problem. Eur. J. Appl. Math. 2(1), 115.CrossRefGoogle Scholar
Schaeffer, D. G. (1976) A new proof of the infinite differentiability of the free boundary in the stefan problem. J. Differ. Equations 20(1), 266269.10.1016/0022-0396(76)90106-6CrossRefGoogle Scholar
Scheiner, S. & Hellmich, C. (2009) Finite volume model for diffusion-and activation-controlled pitting corrosion of stainless steel. Comput. Methods Appl. Mech. Eng. 198(37–40), 28982910.CrossRefGoogle Scholar
Scheiner, S. & Hellmich, C. (2007) Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corros. Sci. 49(2), 319346.CrossRefGoogle Scholar
Srinivasan, J., Liu, C. & Kelly, R. G. (2016) Geometric evolution of flux from a corroding one-dimensional pit and its implications on the evaluation of kinetic parameters for pit stability. J. Electrochem. Soc. 163(10), C694.CrossRefGoogle Scholar
Srinivasan, J., McGrath, M. J. & Kelly, R. G. (2015) A high-throughput artificial pit technique to measure kinetic parameters for pitting stability. J. Electrochem. Soc. 162(14), C725.CrossRefGoogle Scholar
Tarzia, D. A. (2011) Explicit and approximated solutions for heat and mass transfer problems with a moving interface. In: Advanced Topics in Mass Transfer, Vol. 20, pp. 439484.Google Scholar
Zurek, A. (2019) Numerical approximation of a concrete carbonation model: study of the $\sqrt{t} $ -law of propagation. Numer. Method Partial Differ. Equations 35, 18011820.CrossRefGoogle Scholar