Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T22:11:52.709Z Has data issue: false hasContentIssue false

A q-SUPERCONGRUENCE ARISING FROM ANDREWS’ $_4\phi _3$ IDENTITY

Published online by Cambridge University Press:  29 August 2024

JI-CAI LIU*
Affiliation:
Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China
JING LIU
Affiliation:
Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

We establish a q-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas, which extends a q-congruence of Guo and Zeng [‘Some q-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory 145 (2014), 301–316]. The important ingredients in the proof include Andrews’ $_4\phi _3$ terminating identity.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1. Introduction

In 2003, Rodriguez-Villegas [Reference Rodriguez-Villegas, Yui and Lewis5] investigated hypergeometric families of Calabi–Yau manifolds. He observed numerically some remarkable supercongruences between the values of the truncated hypergeometric series and expressions derived from the number of $\mathbb {F}_p$ -points of the associated Calabi–Yau manifolds. For manifolds of dimension $d=1$ , he conjectured four interesting supercongruences associated to certain elliptic curves, one of which is

(1.1) $$ \begin{align} \sum_{k=0}^{p-1} \frac{{2k\choose k}^2}{16^k}\equiv (-1)^{({p-1)}/{2}} \pmod{p^2}, \end{align} $$

where $p\ge 5$ is a prime. The conjectural supercongruence (1.1) was first proved by Mortenson [Reference Mortenson4].

For polynomials $A_1(q), A_2(q),P(q)\in \mathbb {Z}[q]$ , the q-congruence

$$ \begin{align*}A_1(q)/A_2(q)\equiv 0\pmod{P(q)}\end{align*} $$

is understood as $A_1(q)$ is divisible by $P(q)$ , and $A_2(q)$ is coprime with $P(q)$ . In general, for rational functions $A(q),B(q)\in \mathbb {Q}(q)$ and polynomial $P(q)\in \mathbb {Z}[q]$ ,

$$ \begin{align*} A(q)\equiv B(q)\pmod{P(q)}\Longleftrightarrow A(q)-B(q)\equiv 0\pmod{P(q)}. \end{align*} $$

Guo and Zeng [Reference Guo and Zeng3, Corollary 2.2] established a q-analogue of (1.1) as follows:

$$ \begin{align*} \sum_{k=0}^{p-1}\frac{(q;q^2)_k^2}{(q^2;q^2)_k^2}\equiv (-1)^{{(p-1)}/{2}}q^{{(1-p^2)}/{4}} \pmod{[p]^2}. \end{align*} $$

Here and in what follows, the q-analogue of the natural number n is defined by $[n]=(1-q^n)/(1-q)$ , and for $n\ge 1$ , the q-shifted factorial is defined by $(a;q)_n=(1-a)(1-aq)\cdots (1-aq^{n-1})$ with $(a;q)_0=1$ .

In 2011, Sun [Reference Sun7, Conjecture 5.5] conjectured a supercongruence related to (1.1): modulo $p^2$ ,

(1.2) $$ \begin{align} \sum_{k=0}^{(p-1)/2}\frac{{2k\choose k}^2}{32^k}\equiv \begin{cases} \displaystyle 2x-\frac{p}{2x}&\text{if}\ p\equiv 1\pmod{4} \text{ and}\ p=x^2+y^2 \text{ with}\ 4\mid (x-1),\\ 0 &\text{if}\ p\equiv 3\pmod{4}, \end{cases} \end{align} $$

which was proved by Tauraso [Reference Tauraso8] and Sun [Reference Sun6, Theorem 2.2].

Guo and Zeng [Reference Guo and Zeng3, Corollary 2.7] established a partial q-analogue of (1.2):

(1.3) $$ \begin{align} \sum_{k=0}^{(p-1)/2}\frac{(q;q^2)_k^2}{(q^2;q^2)_k (q^4;q^4)_k}q^{2k}\equiv 0\pmod{[p]^2} \end{align} $$

for all primes $p\equiv 3\pmod {4}$ .

To continue the q-story of (1.2), we recall some q-series notation. The basic hypergeometric series is defined by

$$ \begin{align*} {}_{r+1}\phi_{r}\bigg[ \begin{matrix} a_1,a_2,\ldots,a_{r+1}\\[5pt] b_1,b_2,\ldots,b_r\end{matrix};q,z\bigg]= \sum_{k=0}^{\infty}\frac{(a_1,a_2,\ldots,a_{r+1};q)_k}{(q,b_1,b_2,\ldots,b_r;q)_k}z^k, \end{align*} $$

where $(a_1,a_2,\ldots ,a_{m};q)_k=(a_1;q)_k(a_2;q)_k\cdots (a_m;q)_k$ . The nth cyclotomic polynomial is given by

$$ \begin{align*} \Phi_n(q)=\prod_{\substack{1\le k \le n\\[3pt](n,k)=1}} (q-\zeta^k), \end{align*} $$

where $\zeta $ denotes a primitive nth root of unity.

The motivation for this paper is to extend the q-congruence (1.3) of Guo and Zeng, and establish a complete q-analogue of (1.2).

Theorem 1.1. Let n be an odd positive integer. Then, modulo $\Phi _n(q)^2$ ,

(1.4) $$ \begin{align} \sum_{k=0}^{(n-1)/2} & \frac{(q;q^2)_k^2}{(q^2;q^2)_k (q^4;q^4)_k}q^{2k}\notag\\[5pt] &\equiv \begin{cases} \displaystyle (-1)^{(n-1)/4}q^{(n-1)(n+3)/8}\frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} &\text{if}\ n\equiv 1\pmod{4},\\ 0 &\text{if}\ n\equiv 3\pmod{4}. \end{cases} \end{align} $$

The important ingredients in the proof of (1.4) include Andrews’ $_4\phi _3$ terminating identity [Reference Gasper and Rahman2, (II.17), page 355]:

(1.5) $$ \begin{align} {}_{4}\phi_{3}\bigg[ \begin{matrix} q^{-n},a^2q^{n+1},c,-c\\[5pt] aq,-aq,c^2\end{matrix};q,q\bigg] =\begin{cases} 0 &\text{if}\ n\equiv 1\pmod{2},\\ \displaystyle \frac{c^n(q,a^2q^2/c^2;q^2)_{n/2}}{(a^2q^2,c^2q;q^2)_{n/2}} &\text{if}\ n\equiv 0\pmod{2}. \end{cases} \end{align} $$

The rest of the paper is organised as follows. In the next section, we shall explain why (1.4) is a q-analogue of (1.2). The proof of Theorem 1.1 will be presented in Section 3.

2. Why (1.4) is a q-analogue of (1.2)

Let p be an odd prime. It is clear that

$$ \begin{align*} \Phi_p(q)=1+q+\cdots+q^{p-1}. \end{align*} $$

Setting $n\to p$ and $q\to 1$ on both sides of (1.4) gives, modulo $p^2$ ,

(2.1) $$ \begin{align} \sum_{k=0}^{(p-1)/2}\frac{{2k\choose k}^2}{32^k} \equiv \begin{cases} \displaystyle \frac{(-1)^{(p-1)/4}}{2^{(p-1)/2}}{(p-1)/2\choose (p-1)/4} &\text{if}\ p\equiv 1\pmod{4},\\ 0 &\text{if}\ p\equiv 3\pmod{4}. \end{cases} \end{align} $$

By a result due to Chowla et al. [Reference Chowla, Dwork and Evans1],

$$ \begin{align*} {(p-1)/2\choose (p-1)/4}\equiv \frac{2^{p-1}+1}{2}\bigg(2x-\frac{p}{2x}\bigg)\pmod{p^2}, \end{align*} $$

where $p\equiv 1\pmod {4}$ and $p=x^2+y^2$ with $4\mid (x-1)$ . It follows that

(2.2) $$ \begin{align} \frac{(-1)^{(p-1)/4}}{2^{(p-1)/2}}{(p-1)/2\choose (p-1)/4} &\equiv (-1)^{(p-1)/4}\frac{2^{p-1}+1}{ 2^{(p+1)/2}}\bigg(2x-\frac{p}{2x}\bigg)\notag\\[5pt] &\equiv 2x-\frac{p}{2x}\pmod{p^2}, \end{align} $$

where we have used the fact [Reference Sun6, page 1918]:

$$ \begin{align*} \frac{2^{p-1}+1}{ 2^{(p+1)/2}}\equiv (-1)^{(p-1)/4}\pmod{p^2}. \end{align*} $$

Combining (2.1) and (2.2), we arrive at (1.2). Thus, (1.4) is indeed a q-analogue of (1.2).

3. Proof of Theorem 1.1

Let n be an odd positive integer. Setting $n\to (n-1)/2,q\to q^2,a\to 1$ on both sides of (1.5) gives

(3.1) $$ \begin{align} \sum_{k=0}^{(n-1)/2}\frac{(q^{1-n},q^{1+n},c,-c;q^2)_k}{(q^2,q^2,-q^2,c^2;q^2)_k}q^{2k} =\begin{cases} \displaystyle \frac{c^{(n-1)/2}(q^2,q^4/c^2;q^4)_{(n-1)/4}}{(q^4,c^2q^2;q^4)_{(n-1)/4}} &\text{if}\ n\equiv 1\pmod{4},\\ 0 &\text{if}\ n\equiv 3\pmod{4}. \end{cases} \end{align} $$

Letting $c\to 0$ on both sides of (3.1) and noting that for $n\equiv 1\pmod {4}$ ,

$$ \begin{align*} \lim_{c\to 0}(c,-c;q^2)_k=\lim_{c\to 0}(c^2;q^2)_k=\lim_{c\to 0}(c^2q^2;q^4)_{(n-1)/4}=1 \end{align*} $$

and

$$ \begin{align*} \lim_{c\to 0}c^{(n-1)/2}(q^4/c^2;q^4)_{(n-1)/4}=(-1)^{(n-1)/4}q^{(n-1)(n+3)/8}, \end{align*} $$

we obtain

(3.2) $$ \begin{align} \sum_{k=0}^{(n-1)/2} &\frac{(q^{1-n},q^{1+n};q^2)_k}{(q^2;q^2)_k(q^4;q^4)_k}q^{2k} \notag\\ & =\begin{cases} \displaystyle (-1)^{(n-1)/4}q^{(n-1)(n+3)/8}\frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} &\text{if}\ n\equiv 1\pmod{4},\\ 0 &\text{if}\ n\equiv 3\pmod{4}. \end{cases} \end{align} $$

Since

$$ \begin{align*} (1-q^{n-2j+1})(1-q^{n+2j-1})+(1-q^{2j-1})^2q^{n-2j+1}=(1-q^n)^2 \end{align*} $$

and $1-q^n\equiv 0\pmod {\Phi _n(q)}$ ,

$$ \begin{align*} (1-q^{n-2j+1})(1-q^{n+2j-1})\equiv -(1-q^{2j-1})^2q^{n-2j+1}\pmod{\Phi_n(q)^2}. \end{align*} $$

It follows that

$$ \begin{align*} (1-q^{-n+2j-1})(1-q^{n+2j-1})\equiv (1-q^{2j-1})^2 \pmod{\Phi_n(q)^2}. \end{align*} $$

Thus,

(3.3) $$ \begin{align} (q^{1-n},q^{1+n};q^2)_k &=\prod_{j=1}^k (1-q^{-n+2j-1})(1-q^{n+2j-1})\notag\\ &\equiv \prod_{j=1}^k (1-q^{2j-1})^2 =(q;q^2)_k^2 \pmod{\Phi_n(q)^2}. \end{align} $$

Finally, substituting (3.3) into the left-hand side of (3.2) gives, modulo $\Phi _n(q)^2$ ,

$$ \begin{align*} \sum_{k=0}^{(n-1)/2} & \frac{(q;q^2)_k^2}{(q^2;q^2)_k(q^4;q^4)_k}q^{2k} \\ & \equiv \begin{cases} \displaystyle (-1)^{(n-1)/4}q^{(n-1)(n+3)/8}\frac{(q^2;q^4)_{(n-1)/4}}{(q^4;q^4)_{(n-1)/4}} &\text{if}\ n\equiv 1\pmod{4},\\ 0 &\text{if}\ n\equiv 3\pmod{4}, \end{cases} \end{align*} $$

as desired.

Footnotes

The first author was supported by the National Natural Science Foundation of China (grant no. 12171370).

References

Chowla, S., Dwork, B. and Evans, R. J., ‘On the mod ${p}^2$ determination of $\left(\frac{\left(p-1\right)/2}{\left(p-1\right)/4}\right)$ ’, J. Number Theory 24 (1986), 188196.CrossRefGoogle Scholar
Gasper, G. and Rahman, M., Basic Hypergeometric Series, 2nd edn, Encyclopedia of Mathematics and Its Applications, 96 (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Guo, V. J. W. and Zeng, J., ‘Some $q$ -analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory 145 (2014), 301316.CrossRefGoogle Scholar
Mortenson, E., ‘A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function’, J. Number Theory 99 (2003), 139147.CrossRefGoogle Scholar
Rodriguez-Villegas, F., ‘Hypergeometric families of Calabi–Yau manifolds’, in: Calabi–Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Institute Communications, 38 (eds. Yui, N. and Lewis, J. D.) (American Mathematical Society, Providence, RI, 2003), 223231.Google Scholar
Sun, Z.-H., ‘Congruences concerning Legendre polynomials’, Proc. Amer. Math. Soc. 139 (2011), 19151929.CrossRefGoogle Scholar
Sun, Z.-W., ‘On congruences related to central binomial coefficients’, J. Number Theory 131 (2011), 22192238.CrossRefGoogle Scholar
Tauraso, R., ‘An elementary proof of a Rodriguez-Villegas supercongruence’, Preprint, 2009, arXiv:0911.4261v1.Google Scholar