Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:15:04.838Z Has data issue: false hasContentIssue false

Silylation of mechanically ground kaolinite

Published online by Cambridge University Press:  27 February 2018

Q. Tao
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
L. Su
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China Shenzhen Polytechnic, Shenzhen 518055, P.R. China
R.L. Frost
Affiliation:
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia
D. Zhang
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China Shenzhen Polytechnic, Shenzhen 518055, P.R. China
M. Chen
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China Shenzhen Polytechnic, Shenzhen 518055, P.R. China
W. Shen
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
H. He*
Affiliation:
Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
*

Abstract

Silylated kaolinites were synthesized at 80°C without the use of inert gas protection. The method presented started with mechanical grinding of kaolinite, followed by grafting with 3- aminopropyltriethoxysilane (APTES). The mechanical grinding treatment destroyed the ordered sheets of kaolinite, formed fine fragments and generated broken bonds (undercoordinated metal ions). These broken bonds served as new sites for the condensation with APTES. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of −CH2 from APTES. 29Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (29Si CP/MAS NMR) showed that the principal bonding mechanism between APTES and kaolinite fitted a tridentate silylation model (T3) with a chemical shift at −66.7 ppm. The silane loadings of the silylated samples were estimated from the mass loss obtained by TG-DTG curves. The results showed that the 6-hour ground kaolinite could be grafted with the most APTES (7.0%) using cyclohexane as solvent. The loaded amount of APTES in the silylated samples obtained in different solvents decreased in the order as: nonpolar solvent > polar solvent with low dielectric constant (toluene) > polar solvent with high dielectric constant (ethanol).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, L.R., de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Calefi, P.S., Vicente, M.A. & Trujillano, R. (2010) New synthesis strategies for effective functionalization of kaolinite and saponite with silylating agents. Journal of Colloid and Interface Science, 341, 186193.Google Scholar
Bergaya, F., Theng, B.K.G. & Lagaly, G. (2006) Handbook of Clay Science, 309–377. Elsevier. Amsterdam, London.Google Scholar
Brandt, K.B., Elbokl, T.A. & Detellier, C. (2003) Intercalation and interlamellar grafting of polyols in layered aluminosilicates. D-Sorbitol and adonitol derivatives of kaolinite. Journal of Materials Chemistry, 13, 25662572.CrossRefGoogle Scholar
Breen, C., Illés, J., Yarwood, J. & Skuse, D.R. (2007) Varible temperature diffuse reflectance infrared Fourier transform spectroscopic investigation of the effect of ball milling on the water sorbed to kaolin. Vibrational Spectroscopy, 43, 366379.Google Scholar
Frost, R.L., Kristof, J., Horvath, E. & Kloprogge, J.T. (2000) Vibrational spectroscopy of formamideintercalated kaolinites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 11911204.Google Scholar
Frost, R.L., Makó, É., Kristof, J., Horváth, E. & Kloprogge, J.T. (2001) Mechanochemical treatment of kaolinite. Journal of Colloid and Interface Science, 239, 458466.Google Scholar
Frost, R.L., Horváth, E., Makó, É., Kristof, J. & Cseh, T. (2003) The effect of mechanochemical activation upon the intercalation of a high-defect kaolinite with formamide. Journal of Colloid and Interface Science, 265, 386395.CrossRefGoogle ScholarPubMed
Frost, R.L., Horváth, E., Makó, É. & Kristóf, J. (2004) Modification of low- and high-defect kaolinite surfaces: implications for kaolinite mineral processing. Journal of Colloid and Interface Science, 270, 337346.Google Scholar
Gardolinski, J.E.F.C. & Lagaly, G. (2005) Grafted organic derivatives of kaolinite: I. Synthesis, chemical and rheological characterization. Clay Minerals, 40, 537546.Google Scholar
Gârea, S.A., Iovu, H. & Bulearca, A. (2008) New organophilic agents of montmorillonite used as reinforcing agent in epoxy nanocomposites. Polymer Testing, 27, 100113.Google Scholar
Gonzalez-Garcia, F., Ruiz Abrio, M.T. & Gonzalez Rodriguez, M. (1991) Effect of dry grinding on two kaolins of different degrees of crystallinity. Clay Minerals, 26, 549565.CrossRefGoogle Scholar
He, H.P., Duchet, J., Galy, J. & Gerard, J.F. (2005) Grafting of swelling clay materials with 3-aminopropyltriethoxysilane Journal of Colloid and Interface Science, 288, 171176.Google Scholar
He, H.P., Tao, Q., Zhu, J.X., Yuan, P., Shen, W. & Yang, S.Q. (2013) Silylation of clay mineral surfaces. Applied Clay Science, 71, 1520.Google Scholar
Hernando, J., Pourrostami, T., Garrido, J.A., Williams, O.A., Gruen, D.M., Kromka, A., Steinmüller, D. & Stutzmann, M. (2007) Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond. Diamond and Related Materials, 16, 138143.Google Scholar
Itagaki, T. & Kuroda, K. (2003) Organic modification of the interlayer surface of kaolinite with propanediols by transesterification. Journal of Materials Chemistry, 13, 10641068.Google Scholar
Juhasz, A.Z. & Opoczky, L. (1990) Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, pp. 1–234. Ellis Horwood Limited, Chichester.Google Scholar
Kim, J., Grate, J.W. & Wang, P. (2006) Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 10171026.Google Scholar
Kobayashi, H. & Matsunaga, T. (1991) Amino-silane modified superparamagnetic particles with surfaceimmobilized enzyme. Journal of Colloid and Interface Science, 141, 505511.CrossRefGoogle Scholar
Kristóf, É., Juhász, A.Z. & Vassányi, I. (1993) The effect of mechanical treatment on the crystal structure and thermal behavior of kaolinite. Clays and Clay Minerals, 41, 608612.Google Scholar
Murakami, J., Itagaki, T. & Kuroda, K. (2004) Synthesis of kaolinite-organic nanohybrids with butanediols. Solid State Ionics, 172, 279282.CrossRefGoogle Scholar
Palaniandy, S., Azizli, K.A.M., Hussin, H. & Hashim, S.F.S. (2007) Study on mechanochemical effect of silica for short grinding period. International Journal of Mineral Processing, 82, 195202.Google Scholar
Park, A.-Y., Kwon, H., Woo, A.J. & Kim, S.-J. (2005) Layered double hydroxide surface modified with (3- aminopropyl)triethoxysilane by covalent bonding. Advanced Materials, 17, 106109.Google Scholar
Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G. & Lavorgna, M. (2010) Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length. Journal of Colloid and Interface Science, 351, 108115.Google Scholar
Reynolds, R.C. & Bish, D.L. (2002) The effects of grinding on the structure of a low-defect kaolinite. American Mineralogist, 87, 16261630.CrossRefGoogle Scholar
Sánchez-Soto, P.J., del Carmen Jiménez de Haro, M., Pérez-Maqueda, L.A., Varona, I. & Pérez-Rodríguez, J.L. (2000) Effects of dry grinding on the structural changes of kaolinite powders. Journal of the American Ceramic Society, 83, 16491657.Google Scholar
Sharma, K.K., Anan, A., Buckley, R.P., Ouellette, W. & Asefa, T. (2008) Toward efficient nanoporous catalysts: Controlling site-isolation and concentration of grafted catalytic sites on nanoporous materials with solvents and colorimetric elucidation of their site-isolation. Journal of The American Chemical Society, 130, 218228.CrossRefGoogle ScholarPubMed
Su, L.N., Tao, Q., He, H.P., Zhu, J.X. & Yuan, P. (2012) Locking effect: A novel insight in the silylation of montmorillonite surfaces. Materials Chemistry and Physics, 136, 292295.Google Scholar
Su, L.N., Tao, Q., He, H.P., Zhu, J.X., Yuan, P. & Zhu, R.L. (2013) Silylation of montmorillonite surfaces: Dependence on solvent nature. Journal of Colloid and Interface Science, 391, 1620.Google Scholar
Tan, G., Zhang, L., Ning, C., Liu, X. & Liao, J. (2011) Preparation and characterization of APTES films on modification titanium by SAMs. Thin Solid Films, 519, 49975001.CrossRefGoogle Scholar
Tao, Q., Zhu, J., Wellard, R.M., Bostrom, T.E., Frost, R.L., Yuan, P. & He, H. (2011). Silylation of layered double hydroxides via an induced hydrolysis method. Journal of Materials Chemistry, 21, 1071110719.Google Scholar
Tong, J., He, H. & Tao, Q. (2013) Grafting g-aminopropyltriethoxysilane onto the inner surface of kaolinite via 3-step thermal treatment Journal of the Chinese Ceramic Society, 41, 15711576.Google Scholar
Tonlé, I.K., Diaco, T., Ngameni, E. & Detellier, C. (2007) Nanohybrid kaolinite-based materials obtained from the interlayer grafting of 3-aminopropyltriethoxysilane and their potential use as electrochemical sensors. Chemistry of Materials, 19, 66296636.CrossRefGoogle Scholar
Tonlé, I.K., Letaief, S., Ngameni, E., Walcarius, A. & Detellier, C. (2011) Square wave voltammetric determination of lead(II) ions using a carbon paste electrode modified by a thiol-functionalized kaolinite. Electroanalysis, 23, 245252.Google Scholar
Tunney, J.J. & Detellier, C. (1993) Interlamellar covalent grafting of organic units on kaolinite. Chemistry of Materials, 5, 747748.Google Scholar
Tunney, J.J. & Detellier, C. (1996) Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite. Journal of Materials Chemistry, 6, 16791685.CrossRefGoogle Scholar
Wheeler, P.A., Wang, J.Z., Baker, J. & Mathias, L.J. (2005) Synthesis and characterization of covalently functionalized laponite clay. Chemistry of Materials, 17, 30123018.Google Scholar
Wypych, F. & Satyanarayana, K.G. (2004) Clay Surfaces: Fundamentals and Applications, 323 pp. Elsevier. Amsterdam, London.Google Scholar
Yang, S.Q., Yuan, P., He, H.P., Qin, Z.H., Zhou, Q., Zhu, J.X. & Liu, D. (2012) The grafting of g-aminopropyltriethoxysilane (APTES) onto the interlayer hydroxyl groups of kaolinite: effects of the reaction temperature. Applied Clay Science, 62-63, 814.Google Scholar
Zeidan, R.K., Hwang, S.-J. & Davis, M.E. (2006) Multifunctional heterogeneous catalysts: SBA-15- containing primary amines and sulfonic acids. Angewandte Chemie International Edition, 45, 63326335.Google Scholar

A correction has been issued for this article: