Article contents
Toward affordable and sustainable use of precious metals in catalysis and nanomedicine
Published online by Cambridge University Press: 09 November 2018
Abstract
Precious metals represent some of the least abundant elements in the earth’s crust. There is an urgent need to maximize the utilization efficiency of these metals and thereby attain affordable and sustainable products. One approach for achieving this goal is based on the development of hollow nanocrystals with a well-controlled surface structure, together with a wall thickness kept below 2 nm, or roughly 10 layers of atoms. The hollow structure eliminates the waste of interior atoms and creates an inner surface, while the controllable surface structures contribute to the optimization of catalytic activity and selectivity. In this article, we begin with a brief introduction to two methods that have been developed for the synthesis of hollow nanocrystals: the first relying on the galvanic replacement with a sacrificial template, and the second involving layer-by-layer deposition of metal atoms followed by etching. We then showcase some remarkable properties and applications of this novel class of nanostructures, including their use as effective catalysts for energy conversion, photoresponsive carriers for controlled release and drug delivery, and theranostic agents. A discussion of the existing barriers to their commercialization is also presented.
Keywords
- Type
- Technical Feature
- Information
- MRS Bulletin , Volume 43 , Issue 11: Materials for Strain-Mediated Magnetoelectric Systems , November 2018 , pp. 860 - 869
- Copyright
- Copyright © Materials Research Society 2018
Footnotes
This article is based on the MRS Medal Lecture “Toward Affordable and Sustainable Use of Noble-Metal Nanocrystals in Catalysis and Nanomedicine,” presented by Younan Xia at the 2017 MRS Fall Meeting in Boston, Mass.
References
- 9
- Cited by