Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-20T08:47:13.477Z Has data issue: false hasContentIssue false

PALEO TSUNAMIS AND STORM SURGES RECORDED BY FOSSIL CORAL ON YAKUSHIMA ISLAND, JAPAN

Published online by Cambridge University Press:  20 September 2024

Sabrina G Lloyd*
Affiliation:
Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan Department of Multidisciplinary Sciences, Graduate Program on Environmental Sciences, The University of Tokyo, Komaba, Tokyo, Japan
Yusuke Yokoyama*
Affiliation:
Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan Department of Multidisciplinary Sciences, Graduate Program on Environmental Sciences, The University of Tokyo, Komaba, Tokyo, Japan Department of Earth and Planetary Sciences, Graduate School of Science, The University of Tokyo, Komaba, Tokyo, Japan Biogeochemistry Research Centre, JAMSTEC, Yokosuka, Kanagawa, Japan Department of Nuclear Physics & Accelerator Applications, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory, Australia
Takahiro Aze
Affiliation:
Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
Yosuke Miyairi
Affiliation:
Department of Ocean Floor Geoscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
Kohei Abe
Affiliation:
Energy Division, Oyo Corporation, Saitama, Saitama, Japan
Tomoo Echigo
Affiliation:
The Historical Earthquake Study Group, Kankyo Chishitsu Co. Ltd., Kawasaki, Kanagawa, Japan
*
*Corresponding authors: Emails: [email protected]; [email protected]
*Corresponding authors: Emails: [email protected]; [email protected]

Abstract

Yakushima is a small, mountainous island off southern Kyushu, Japan. Its proximity to active volcanos and subduction zones leaves Yakushima vulnerable to large megathrust earthquakes and tsunamis, in addition to powerful typhoons and storm surges. These hazardous events deposit beach boulders: large rocks moved above sea-level by powerful waves. By radiocarbon dating the fossilized coral within these boulders, one can derive age estimates of the hazard events. Reliably estimating the magnitude and timing of geological events in the historical record is vital for future hazard prediction and mitigation. In this study, we estimated the deposition age of ten boulders on the north coast of Yakushima to infer potential paleo tsunamis and storm surges. We found that large wave events have occurred frequently throughout the Holocene. Based on the boulders’ ages, we identified four potential deposition events at 1986–2692 cal yr BP, 3522–4075 cal yr BP, 4773–5232 cal yr BP, and 6187–6638 cal yr BP. These deposits are likely a result of storm surges, or tsunamis from nearby volcanic activity or subduction earthquakes. Another set of boulders dated to 5125–5738 cal yr BP were likely exposed due to a decline in sea-level following the Holocene high sea-level stand. Further modelling could determine the wave height necessary to move the boulders and distinguish between storm and tsunami deposits. This is especially pertinent given the high frequency of coastal geohazards, and the likelihood of similar hazards impacting southeast Japan in the future.

Type
Conference Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022

References

REFERENCES

Ando, M. 1975. Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough Japan. Tectonophysics 27(2):119140.CrossRefGoogle Scholar
Ando, M, Kitamura, A, Tu, Y, Ohashi, Y, Imai, T, Nakamura, M, Ikuta, R, Miyairi, Y, Yokoyama, Y, Shishikura, M. 2018. Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy. Tectonophysics doi: 10.1016/j.tecto.2017.11.007 CrossRefGoogle Scholar
Ando, M, Nakamura, M. 2013. Seismological evidence for a tsunami earthquake recorded four centuries ago on historical documents. Geophysical Journal International 195(2):10881101.CrossRefGoogle Scholar
Araoka, D, Yokoyama, Y, Suzuki, A, Goto, K, Miyagi, K, Miyazawa, K, Matsuzaki, H, Kawahata, H. 2013. Tsunami recurrence revealed by Porites coral boulders in the southern Ryukyu Islands Japan. Geology 41(8):919922.CrossRefGoogle Scholar
Barr, C, Tibby, J, Leng, MJ, Tyler, JJ, Henderson, AC, Overpeck, JT, Simpson, GL, Cole, JE, Phipps, SJ, Marshall, JC, McGregor, GB. 2019. Holocene el Niño–southern Oscillation variability reflected in subtropical Australian precipitation. Scientific Reports 9(1):1627.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Daniell, J, Vervaeck, A, Wenzel, F. 2011. A timeline of the Socio-economic effects of the 2011 Tohoku Earthquake with emphasis on the development of a new worldwide rapid earthquake loss estimation procedure. Australian Earthquake Engineering Society 2011 Conference, Barossa Valley, South Australia.Google Scholar
Fujino, N, Kobayashi, T. 1997. Eruptive history of Kaimondake volcano southern Kyushu Japan. Kazan 42(3):195211.Google Scholar
Fujiwara, O, Goto, K, Ando, R, Garrett, E. 2020. Paleotsunami research along the Nankai Trough and Ryukyu Trench subduction zones–current achievements and future challenges. Earth–Science Reviews 210:103333.CrossRefGoogle Scholar
Fujiwara, O, Sato, Y, Ono, E, Umitsu, M. 2013. Researches on tsunami deposits using sediment cores: 3.4 ka tsunami deposit in the Rokken–gawa lowland near Lake Hamana Pacific coast of central Japan. Journal of Geography–Chigaku Zasshi 122(2):308322.CrossRefGoogle Scholar
Fukushima, Y, Nishikawa, T, Kano, Y. 2022. High probability of successive occurrence of Nankai megathrust earthquakes. Preprint.CrossRefGoogle Scholar
Garrett, E, Fujiwara, O, Garrett, P, Heyvaert, VM, Shishikura, M, Yokoyama, Y, Hubert-Ferrari, A, Brückner, H, Nakamura, A, De Batist, M, QuakeRecNankai Team. 2016. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough Japan. Earth-Science Reviews 159:337357.CrossRefGoogle Scholar
Geshi, N, Kobayashi, T. 2006 Volcanic Activities of Kuchinoerabujima Volcano within the Last 30000 Years. Volcano 51(1):120.Google Scholar
Geshi, N, Maeno, F, Nakagawa, S, Naruo, H, Kobayashi, T. 2017. Tsunami deposits associated with the 7.3 ka caldera-forming eruption of the Kikai Caldera insights for tsunami generation during submarine caldera-forming eruptions. Journal of Volcanology and Geothermal Research 347:221233.CrossRefGoogle Scholar
Ghazouli, Z, Bertrand, S, Vanneste, K, Yokoyama, Y, Nomade, J, Gajurel, A.P, van der Beek, PA. 2019. Potentially large post-1505 AD earthquakes in western Nepal revealed by a lake sediment record. Nature Communications 10:20058.Google Scholar
Global Volcanism Program. 2020. Report on Kuchinoerabujima (Japan). Bennis K L, Venzke E, eds. Bulletin of the Global Volcanism Network 45:5. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN202005-282050 CrossRefGoogle Scholar
Goto, K, Kawana, T, Imamura, F. 2010a. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth-Science Reviews 102(1–2):7799.CrossRefGoogle Scholar
Goto, K, Miyagi, K, Imamura, F. 2013. Localized tsunamigenic earthquakes inferred from preferential distribution of coastal boulders on the Ryukyu Islands Japan. Geology 41(11):11391142.CrossRefGoogle Scholar
Goto, K, Miyagi, K, Kawamata, H, Imamura, F. 2010b. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology 269:3445.CrossRefGoogle Scholar
Heaton, T, Köhler, P, Butzin, M, Bard, E, Reimer, R, Austin, W, Bronk Ramsey, C, Grootes, P, Hughen, K, Kromer, B, Reimer, P, Adkins, J, Burke, A, Cook, M, Olsen, J, Skinner, L. 2020. Marine20–the marine radiocarbon calibration curve (0–55,000 cal BP). Radiocarbon 62.Google Scholar
Henderson-Sellers, A, Zhang, H, Berz, G, Emanuel, K, Gray, W, Landsea, C, Holland, G, Lighthill, J, Shieh, SL, Webster, P, McGuffie, K. 1998. Tropical cyclones and global climate change: a post-IPCC assessment. Bulletin of the American Meteorological Society 79(1):1938.2.0.CO;2>CrossRefGoogle Scholar
Hirabayashi, S, Yokoyama, Y, Suzuki, A, Miyairi, Y, Aze, T. 2017. Short-term fluctuations in regional radiocarbon reservoir age recorded in coral skeletons from the Ryukyu Islands in the north-western Pacific. Journal of Quaternary Science 32(1):16.CrossRefGoogle Scholar
Hirose, F, Maeda, K, Fujita, K, Kobayashi, A. 2022. Simulation of great earthquakes along the Nankai Trough: reproduction of event history slip areas of the Showa Tonankai and Nankai earthquakes heterogeneous slip-deficit rates and long-term slow slip events. Earth Planets and Space 74(1):131.CrossRefGoogle Scholar
Inoue, K. (1999). Shimabara-Shigatusaku earthquake and topographic changes by Shimabara catastrophe in 1792. Journal of the Japan Society of Erosion Control Engineering 52(4):4554.Google Scholar
Ishibashi, K. 2004. Status of historical seismology in Japan. Annals of Geophysics 47(2–3).Google Scholar
Ishikawa, H, Arimura, K, Ōki, K, Maruni, K. 1979. 14C ages of the pyroclastic flow and the Kaimon volcanic ash bed in the Kagoshima Prefecture. Geological Journal 85(11):695697.Google Scholar
Kajitani, Y, Chang, S, E, Tatano, H. 2013. Economic impacts of the 2011 Tōhoku-Oki earthquake and tsunami. Earthquake Spectra 29(1):457478.CrossRefGoogle Scholar
Kitamura, A, Fujiwara, O, Shinohara, K, Akaike, S, Masuda, T, Ogura, K, Urano, Y, Kobayashi, K, Tamaki, C, Mori, H. 2013. Identifying possible tsunami deposits on the Shizuoka Plain Japan and their correlation with earthquake activity over the past 4000 years. The Holocene 23(12):16841698.CrossRefGoogle Scholar
Kitamura, A, Yamada, K, Sugawara, D, Yokoyama, Y, Miyairi, Y, Hamatome team 2020 Tsunamis and submarine landslides in Suruga Bay Central Japan caused by Nanakai-Suruga Trough megathrust earthquakes during the last 5000 years. Quaternary Science Reviews 106527.CrossRefGoogle Scholar
Komori, J, Shishikura, M, Ando, R, Yokoyama, Y, Miyairi, Y. 2021. A Bayesian approach to age estimation of marine terraces and implications for the history of the great Kanto earthquakes central Japan. Quaternary Science Reviews 272:107217.CrossRefGoogle Scholar
Maeno, F, Taniguchi, H. 2007. Spatiotemporal evolution of a marine caldera-forming eruption generating a low-aspect ratio pyroclastic flow 7.3 ka Kikai caldera Japan: implication from near-vent eruptive deposits. Journal of Volcanology and Geothermal Research 167(1–4):212238.CrossRefGoogle Scholar
Matsushita, T, Osada, M, Takahashi, M. 2013. AMS 14C ages and petrological features for solidified fractures with carbonates at coastal outcrops of Yakushima Island, Japan. Environmental Earth Sciences 68:577584.CrossRefGoogle Scholar
Minamidate, K, Goto, K, Watanabe, M, Roeber, V, Toguchi, K, Sannoh, M, Nakashima, Y, Kan, Hironobu. 2020. Millennial scale maximum intensities of typhoon and storm wave in the northwestern Pacific Ocean inferred from storm deposited reef boulders. Scientific Reports (10):e7218.CrossRefGoogle Scholar
Nakada, M, Yonekura, N, Lambeck, K. 1991. Late Pleistocene and Holocene sea-level changes in Japan: implications for tectonic histories and mantle rheology. Palaeogeography, Palaeoclimatology, Palaeoecology 85(1–2):107122.CrossRefGoogle Scholar
Nakagawa, S, Nanayama, F, Sasaki, Y, Omote, M, Geshi, N, Watanabe, K, Kobayashi, T. 2017. Origin of the medieval event gravel beds on the Holocene wave-cut bench around Koseda coast northeastern Yakushima Island south Kyushu: Preliminary report. Fukuoka University Science Reports 47:1532.Google Scholar
Nakata, T, Takahashi, T, Koba, M. 1978. Holocene-emerged coral reefs and sea-level changes in the Ryukyu Islands. Geographical review of Japan 51(2):87108.CrossRefGoogle Scholar
Namegaya, Y, Maemoku, H, Shishikura, M, Echigo, T. 2022. Evidence from boulders for extraordinary tsunamis along Nankai Trough Japan. Tectonophysics 842:229487.CrossRefGoogle Scholar
Nanayama, F, Maeno, F. 2019. Evidence on the Koseda coast of Yakushima Island of a tsunami during the 7.3 ka Kikai caldera eruption. Island Arc 28(2):e12291.CrossRefGoogle Scholar
Nanayama, F, Tsuji, T, Yamaguchi, T, Kondo, Y, Ikeda, M, Nakanishi, T, Miwa, M, Hongo, C, Furusawa, A, Kuwahata, M. 2021. Great earthquake at 7.3 ka inferred from tsunami deposits in the Sukumo Bay area Southwestern Japan. Island Arc 30(1):e12422.CrossRefGoogle Scholar
Omoto, K. 2001. Radiocarbon ages of beach rocks and Late Holocene sea-level changes in the southern part of the Nansei Islands southwest of Japan. Radiocarbon 43(2B):887898.CrossRefGoogle Scholar
Oouchi, K, Yoshimura, J, Yoshimura, H, Mizuta, R, Kusunoki, S, Noda, A. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. Journal of the Meteorological Society of Japan. Ser. II 84(2):259276.CrossRefGoogle Scholar
Paris, R. 2015. Source mechanisms of volcanic tsunamis. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 373(2053):20140380.CrossRefGoogle ScholarPubMed
Pirazzoli, P, Kawana, T, Montaggioni, L. 1984. Late Holocene sea-level changes in Tarama Island, the Ryukyus, Japan. Earth Science 38(2):113118a.Google Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, R, Friedrich, M, Grootes, P, Guilderson, T, Hajdas, I, Heaton, T, Hogg, A, Hughen, K, Kromer, B, Manning, S, Muscheler, R, Palmer, J, Pearson, C, van der Plicht, J, Reimer, R, Richards, D, Scott, E, Southon, J, Turney, C, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, S, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62.CrossRefGoogle Scholar
Sato, Y, Fujiwara, O, Ono, E, Umitsu, M. 2011. Environmental change in coastal lowlands around the Lake Hamana during the middle to late Holocene. Geogr. Rev. Jpn 84:258273.Google Scholar
Shibayama, T, Ohira, K, Takabatake, T. 2013. Present and future tsunami and storm surge protections in Tokyo and Sagami Bays. In Proceedings of the 7th international conference on Asian and Pacific Coasts (APAC 2013):764–766.Google Scholar
Shirahama, Y, Miyashita, Y, Kametaka, M, Suzuki, Y, Miyairi, Y, Yokoyama, Y. 2021. Detailed paleoseismic history of the Hinagu fault zone revealed by the high-density radiocarbon dating and trenching survey across a surface rupture of the 2016 Kumamoto earthquake Kyushu Japan Island Arc 30(1):e12376.CrossRefGoogle Scholar
Smith, V, Staff, R, Blockley, S, Ramsey, C, Nakagawa, T, Mark, D, Takemura, K, Danhara, T. 2013. Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka. Quaternary Science Reviews 67:121–37.CrossRefGoogle Scholar
Taira, A, Okada, H, Whitaker, J. H, Smith, A, J. 1982. The Shimanto Belt of Japan: cretaceous–lower Miocene active-margin sedimentation. Geological Society London Special Publications 10(1):526.CrossRefGoogle Scholar
Tam, E, Yokoyama, Y. 2021 A review of MIS 5e sea-level proxies around Japan. Earth System Science Data 13:14771497.CrossRefGoogle Scholar
Umitsu, M. 1991. Holocene sea-level changes and coastal evolution in Japan. The Quaternary Research (Daiyonki-Kenkyu) 30(3):187196.CrossRefGoogle Scholar
Woodroffe, C, Webster, J. 2014. Coral reefs and sea-level change. Marine Geology 352:248267.CrossRefGoogle Scholar
Woodruff, J. D, Donnelly, J. P, Okusu, A. 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki Japan. Quaternary Science Reviews 28(17–18):17741785.CrossRefGoogle Scholar
Yamashita, T, Nakamura, Y, Miyagi, E, Oka, H, Nishioka, Y, Takeuchi, H, Kyan, T, Hoshi, M. 2008. Evaluation of inundation and damage caused by tsunamis and storm surges on the coast of Okinawa Prefecture. In Proceedings of Coastal Engineering JSCE 55:306310.CrossRefGoogle Scholar
Yokoyama, Y, Hirabayashi, S, Goto, K, Okuno, J, Sproson, AD, Haraguchi, T, Ratnayake, N, Miyairi, Y. 2019a. Holocene Indian Ocean sea level Antarctic melting history and past tsunami deposits inferred using sea level reconstructions from the Sri Lankan Southeastern Indian and Maldivian coasts. Quaternary Science Reviews 206:150161.CrossRefGoogle Scholar
Yokoyama, Y, Maeda, Y, Okuno, J, Miyairi, Y, Kosuge, T. 2016. Holocene Antarctic melting and lithospheric uplift history of the southern Okinawa trough inferred from mid- to late-Holocene sea level in Iriomote Island Ryukyu Japan. Quaternary International 397:342348 doi: 10.1016/j.quaint.2015.03.030 CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Aze, T, Sawada, C, Ando, Y, Izawa, S, Ueno, Y, Hirabayashi, S, Fukuyo, N, Ota, K, Shimizu, Y, Zeng, Y, Lan, H, Tsuneoka, R, Ando, K, Nemoto, K, Obrochta, S, Behrens, B, Tam, E, Leggett, K, Rzeszewicz, J, Huang, Z, Kondo, R, Nagata, T. 2022. Efficient radiocarbon measurements on marine and terrestrial samples with single stage Accelerator Mass Spectrometry at the Atmosphere and Ocean Research Institute University of Tokyo. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 532:6267.CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Aze, T, Yamane, M, Sawada, C, Ando, Y, De Natris, M, Hirabayashi, S, Ishiwa, T, Sato, N, Fukuyo, N. 2019b. A single stage Accelerator Mass Spectrometry at the Atmosphere and Ocean Research Institute. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 455:311316.CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Matsuzaki, H, Tsunomori, F. 2007. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation. Nuclear Instruments and Methods in Physics Research Section B 259(1):330334.CrossRefGoogle Scholar
Yokoyama, Y, Nakada, M, Maeda, Y, Nagaoka, S, Okuno, JI, Matsumoto, E, Sato, H, Matsushima, Y. 1996. Holocene sea-level change and hydro-isostasy along the west coast of Kyushu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 123(1–4):2947.CrossRefGoogle Scholar
Yokoyama, Y, Nakamura, A, Nagano, G, Maemoku, H, Miyairi, Y, Obrochta, S, Matsuzaki, H. 2023. An initial attempt to date Pleistocene marine terraces in the south coast of Japan using in situ cosmogenic 10Be and 26Al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 535:255260.CrossRefGoogle Scholar
Yoneda, M, Uno, H, Shibata, Y, Suzuki, R, Kumamoto, Y, Yoshida, K, Sasaki, T, Suzuki, A, Kawahata, H. 2007. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):432437.CrossRefGoogle Scholar
Supplementary material: File

Lloyd et al. supplementary material

Lloyd et al. supplementary material
Download Lloyd et al. supplementary material(File)
File 6.1 MB