Hostname: page-component-f554764f5-qhdkw Total loading time: 0 Render date: 2025-04-20T07:06:45.579Z Has data issue: false hasContentIssue false

On the formation of cores in accreting filaments and the impact of ambient environment on it

Published online by Cambridge University Press:  14 November 2024

Sumedh Vinayak Anathpindika*
Affiliation:
Indian Institute of Technology, Kharagpur, West Bengal, India University Observatory München, München, Germany
James Di Francesco
Affiliation:
National Research Council of Canada, Herzberg, Astronomy & Astrophysics Research Centre, Victoria, BC V9E 2E7, Canada
*
Corresponding author: Sumedh Vinayak Anathpindika; Email: [email protected]

Abstract

Results from some recent numerical works, including ours, lend credence to the thesis that the ambient environment, that is, the magnitude of external pressure, affects the star-forming ability of clouds and filaments. In continuation with our series of papers on this subject, we explore this thesis further by developing new hydrodynamic simulations of accreting filaments confined by external pressures in the range $10^{4 -7}$ K cm$^{-3}$. Our principal findings are – (i) irrespective of linemass, filament-fragmentation generally yields spheroidal cores. The initially sub-critical filaments in low to intermediate external pressure environments form broad cores suggesting that weakly self-gravitating filaments must fragment via the collect – and- collapse mode to form broad cores. Transcritical filaments, by contrast, become susceptible to the Jeans-type instability and form pinched cores; (ii) the ambient environment bears upon the physical properties of filaments including their FWHM$_{fil}$. Only the filaments initially suffused with subsonic turbulence in Solar-Neighbourhood-like environments, however, have FWHM$_{fil}$$\sim$ 0.1 pc. In high pressure environs such filaments not only have much smaller widths, but also become severely eviscerated. On the contrary, filaments suffused with initially supersonic turbulence are typically broader; (iii) the quasi-oscillatory nature of velocity gradients must be ubiquitous along filament lengths and its magnitude generally increases with increasing pressure. The periodicity of the velocity gradients approximately matches the fragmentation lengthscale of filaments; (iv) oscillatory features of the radial component of the velocity gradient are a unreliable proxy for detecting signatures of accretion onto filaments; and (v) filaments at either extreme of external pressure are inefficient at cycling gas into the dense phase which could reconcile the corresponding inefficiency of star-formation in such environments.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, D., Inoue, T., Inutsuka, S., & Matsumoto, T. 2021, ApJ, 916, 83 CrossRefGoogle Scholar
Anathpindika, A., Burkert, A., & Kuiper, R. 2017, MNRAS, 466, 4633 Google Scholar
Anathpindika, A., Burkert, A., & Kuiper, R. 2018, MNRAS, 474, 1277 CrossRefGoogle Scholar
Anathpindika, S., & Freundlich, J. 2015, PASA, 32, 07 CrossRefGoogle Scholar
Anathpindika, S. V., & Di Francesco, J. 2021, MNRAS, 502, 564A (Paper I)CrossRefGoogle Scholar
Anathpindika, S. V., & Di Francesco, J. 2022, MNRAS, 513, 1275 (Paper II)CrossRefGoogle Scholar
André, Ph., et al. 2010, A&A, 518, L102 Google Scholar
André, Ph., K $\ddot{\mathrm{o}}$ nyves, V., Roy, A., & Arzoumanian, D. 2016, Proc. IAU, 29B, 708CrossRefGoogle Scholar
André, Ph., Palmeirim, P., & Arzoumanian, D. 2022, A&A, 667, L1CrossRefGoogle Scholar
Ao, Y., et al. 2013, A&A, 550, A135 CrossRefGoogle Scholar
Arzoumanian, D., et al. 2011, A&A, 529, L6CrossRefGoogle Scholar
Arzoumanian, D., André, Ph., Peretto, N., & K $\ddot{\mathrm{o}}$ nyves, V. 2013, A&A, 553, A119CrossRefGoogle Scholar
Arzoumanian, D., et al. 2019, A&A, 621, A42 CrossRefGoogle Scholar
Bally, J., 1987, ApJ, 312, L45 CrossRefGoogle Scholar
Beuther, H., Ragan, S. E., Johnston, K., Henning, Th., Hacar, A., & Kainulainen, J. 2015, A&A, 584, A67 CrossRefGoogle Scholar
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)Google Scholar
Bonne, L., et al. 2020, A&A, 644, A27 CrossRefGoogle Scholar
Boulares, A. & Cox, D. P. 1990, ApJ, 365, 544 CrossRefGoogle Scholar
Busquet, G., et al. 2016, ApJ, 819, 139 CrossRefGoogle Scholar
Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002, ApJ, 572, 238 CrossRefGoogle Scholar
Ceccarelli, C., et al. 2002, A&A, 383, 603 CrossRefGoogle Scholar
Chen Chun-Yuan, M., et al. 2020, ApJ, 891, 84 CrossRefGoogle Scholar
Clarke, S., Whitworth, A. P., Duarte-Cabral, A., & Hubber, D. 2017, MNRAS, 468, 2489 CrossRefGoogle Scholar
Dhabal, A., Mundy, L. G., Rizo, M. J., Storm, S., & Tueben, P. 2018, ApJ, 853, 169 CrossRefGoogle Scholar
Dobbs, C., & Baba, J. 2014, PASA, 31, 35 CrossRefGoogle Scholar
Dutrey, A., Langer, W. D., Bally, J., Duvert, G., Castets, A., & Wilson, R. W. 1991, A&A, 247, L9 Google Scholar
Federrath, C., & Klessen, R. 2012, ApJ, 761, 156 CrossRefGoogle Scholar
Federrath, C., et al. 2016, ApJ, 832, 143 CrossRefGoogle Scholar
Federrath, C. 2016, MNRAS, 457, 375 CrossRefGoogle Scholar
Federrath, C., & Krumnolz, M. 2019, FrASS, Vol 6, id. 7Google Scholar
Federrath, C., Klessen, R., Iapichino, L., & Beattie, J. 2021, NatAs, 5, 365 CrossRefGoogle Scholar
Fernández-López, M., et al. 2014, ApJL, 790, L19 CrossRefGoogle Scholar
Fischera, J., & Martin, P. G. 2012, A&A, 542, A77 CrossRefGoogle Scholar
Gehman, C. S., Adams, F, C., Fatuzzo, M., & Watkins, R. 1996, ApJ, 457, 718CrossRefGoogle Scholar
Gómez, H., & Vázquez-Semadeni, E. 2014, ApJ, 791, 124 CrossRefGoogle Scholar
Gong, H., & Ostriker, E. 2011, ApJ, 729, 120 CrossRefGoogle Scholar
Gong, Y., Belloche, A., Du, F. J., Menten, K. M., Henkel, C., Li, G. X., Wyrowski, F., & Mao, R. Q. 2021, A&A, 640, A170 CrossRefGoogle Scholar
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. 1993, ApJ, 406, 528 CrossRefGoogle Scholar
Goodman, A. A., Pineda, J. E., & Schnee, S. L. 2009, ApJ, 692, 91 CrossRefGoogle Scholar
Gritschneder, M., Heigl, S., & Burkert, A. 2017, ApJ, 834, 202 CrossRefGoogle Scholar
Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, Protostars & Planets VII, ASP Conference Series, ed. S.-i. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, Vol. 534, 153Google Scholar
Hacar, A., Kainulainen, J., Tafalla, M., Beuther, B., & Alves, J. 2016, A&A, 587, A97 CrossRefGoogle Scholar
Hacar, A., Tafalla, M., Forbrich, J., Alves, J., Meingast, S., Grossschedel, J., & Teixeira, P. S. 2018, A&A, 610, A77 CrossRefGoogle Scholar
Hacar, A., Clark, S. E., Heitsch, F., Kainulainen, J., Panopoulou, G., Seifried, D., & Smith, R. 2023, To appear in PPVII, ed. S.-i. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. TamuraGoogle Scholar
Heigl, S., Gritschneder, M., & Burkert, A. 2018, MNRAS, 481, L1 CrossRefGoogle Scholar
Hennebelle, P. 2013, A&A, 556, A153 CrossRefGoogle Scholar
Hennebelle, P., & Inutsuka, S.-i. 2019, FASS, 6CrossRefGoogle Scholar
Hennemann, M., et al. 2012, A&A, 543, L3 Google Scholar
Henshaw, J. D., Caselli, P., Fontani, F., Jiménezz-Serra, I., & Tan, J. C. 2014, MNRAS, 440, 2860 CrossRefGoogle Scholar
Henshaw, J. D., Longmore, S. D., & Kruijssen, J. M. D. 2016, MNRAS, 463, L122 CrossRefGoogle Scholar
Henshaw, J. D., et al. 2017, MNRAS, 464, L31 CrossRefGoogle Scholar
Henshaw, J. D., et al. 2019, MNRAS, 485, 2457 Google Scholar
Henshaw, J. D., et al. 2020, NatAs, 4, 1064 Google Scholar
Heyer, M., & Dame, T. M. 2015, ARA&A, 53, 583 CrossRefGoogle Scholar
Hubber, D., Goodwin, S., & Whitworth, A. 2006, A&A, 450, 881 CrossRefGoogle Scholar
Hughes, A., et al. 2010, MNRAS, 406, 2065 Google Scholar
Hughes, A., et al. 2013, ApJ, 779, 46 CrossRefGoogle Scholar
Inoue, T., Hennebelle, P., Fukui, Y., Matsumoto, T., Iwasaki, K., & Inutsuka, S. 2018, PASJ, 70, S53 CrossRefGoogle Scholar
Inutsuka, S., & Miyama, S. 1997, ApJ, 480, 681 CrossRefGoogle Scholar
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35 CrossRefGoogle Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2013, A&A, 553, L8 CrossRefGoogle Scholar
Kirk, H., et al. 2013, ApJ, 766, 115 CrossRefGoogle Scholar
K $\ddot{\mathrm{o}}$ nyves, V., et al. 2015, A&A, 584, A91Google Scholar
K $\ddot{\mathrm{o}}$ nyves, V., et al. 2020, A&A, 635, A34 Google Scholar
Kumar, M. S. N., Arzoumainan, D., Men’schikov, A., Palmeirim, P., Matsumura, M., & Inutsuka, S. 2022, A&A, A114, 658 CrossRefGoogle Scholar
Lada, C., Lombardi, M., & Alves, J. 2009, ApJ, 703, 52 CrossRefGoogle Scholar
Larson, R., 1973, FCPh, 1, 1 CrossRefGoogle Scholar
Lee, E. J., Mivelle-Desch $\hat{\mathrm{e}}$ nes, M.-A., & Murray, N. W. 2016, ApJ, 833, 229CrossRefGoogle Scholar
Lee, K. I., et al. 2014, ApJ, 797, 76 CrossRefGoogle Scholar
Loren, R. B. 1989, ApJ, 338, 902 CrossRefGoogle Scholar
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367 CrossRefGoogle Scholar
Maddalena, R. J., Morris, M., Moscowitz, J., & Thaddeus, P. 1986, ApJ, 303, 375 CrossRefGoogle Scholar
McKee, C. F. 1995, The Physics of ISM & IGM, ASPC, 80, 292Google Scholar
Meidt, S., et al. 2013, ApJ, 779, 45 CrossRefGoogle Scholar
Men’schikov, A., et al. 2010, A&A, 518, L103 Google Scholar
Mills, E. A. C., & Morris, M. R. 2013, ApJ, 772, 105 CrossRefGoogle Scholar
Moeckel, N., & Burkert, A. 2015, ApJ, 807, 67 CrossRefGoogle Scholar
Murphy, D. C., & Myers, P. C. 1985, ApJ, 298, 818 CrossRefGoogle Scholar
Myers, P. C. 2017, ApJ, 838, 10 CrossRefGoogle Scholar
Nagasawa, M. 1987, PTPh, 77, 635 CrossRefGoogle Scholar
Nakamura, F., Hanawa, T., & Nakano, T. 1991, PASJ, 43, 685 Google Scholar
Oey, M. S., & García-Segura, G. 2004, ApJ, 613, 302 CrossRefGoogle Scholar
Orkisz, J. H., et al. 2019, A&A, 624, A113 CrossRefGoogle Scholar
Ostriker, J. 1964, ApJ, 140, 1056 CrossRefGoogle Scholar
Padoan, P., & Nordlund, Å. 2011, ApJ, 730, 40 CrossRefGoogle Scholar
Palmeirim, P., et al. 2013, A&A, 550, A38 CrossRefGoogle Scholar
Panopoulou, G. V., Tassis, K., Goldsmith, P. F., & Heyer, M. 2014, MNRAS, 444, 2507 CrossRefGoogle Scholar
Panopoulou, G. V., et al. 2022, A&A, 657, L13 CrossRefGoogle Scholar
Peretto, N., et al. 2014, A&A, 561, A83 CrossRefGoogle Scholar
Peretto, N., et al. 2021, EPJ Web of Conferences, ed. De Petris, M., Ferragamo, A., & Mayet, F., Vol. 257, id. 37Google Scholar
Pon, A., Johnstone, D., & Heitsch, F. 2011, ApJ, 740, 88 CrossRefGoogle Scholar
Pineda, J. E., et al. 2010, ApJL, 712, L116 CrossRefGoogle Scholar
Priestley, F. D., & Whitworth, A. P. 2022, MNRAS, 509, 1494 CrossRefGoogle Scholar
Rathborne, J., et al. 2014, ApJL, 795, L25b CrossRefGoogle Scholar
Rathborne, J. M., et al. 2014, ApJ, 786, 140a CrossRefGoogle Scholar
Rathborne, J. M., et al. 2016, PASA, 33, e30Google Scholar
Rezaei, Kh., & Kainulainen, J. 2022, ApJL, 930, L22CrossRefGoogle Scholar
Rice, T., Goodman, A., Bergin, E., Beumont, C., & Dame, T. 2016, ApJ, 822, 52 CrossRefGoogle Scholar
Rodríguez-Fernández, N. J., et al. 2001, A&A, 365, 174 CrossRefGoogle Scholar
Schneider, N., & Elmegreen, B. 1979, ApJS, 41, 87 CrossRefGoogle Scholar
Schneider, N., Csengeri, T., Bomtemps, S., Motte, F., Simon, R., Hennebelle, P., Federrath, C., & Klessen, R. 2010, A&A, 52, A49 CrossRefGoogle Scholar
Schneider, N., et al. 2013, ApJL, 766, L17 Google Scholar
Schisano, E., et al. 2014, ApJ, 791, 27 CrossRefGoogle Scholar
Schisano, E., et al. 2020, MNRAS, 492, 5420 Google Scholar
Seta, A., & Federrath, C. 2022, MNRAS, 514, 957 CrossRefGoogle Scholar
Slavin, J. D., & Cox, D. P. 1993, ApJ, 417, 187 CrossRefGoogle Scholar
Smith, R. J., Glover, S., & Klessen, R. 2014, MNRAS, 445, 2900 CrossRefGoogle Scholar
Stanimirović, S. & Lazarian, A. 2001, ApJ, 551, L53 CrossRefGoogle Scholar
Stanimirović, S., Staveley-Smith, L., Dickey, J. M., Sault, R. J., & Snowden, S. L. 1999, MNRAS, 302, 417 CrossRefGoogle Scholar
Stodolkiewicz, J. S. 1963, AcA, 13, 30 CrossRefGoogle Scholar
Stutz, A., & Kainulainen, J. 2015, A&A, 577, L6 CrossRefGoogle Scholar
Suri, S., et al. 2019, A&A, 623, A142 CrossRefGoogle Scholar
Tatematsu, K., et al. 1993, ApJ, 404, 643 CrossRefGoogle Scholar
Vishniac, E. T. 1983, ApJ, 274, 152 CrossRefGoogle Scholar
Vutisalchavakul, N., Evans, II, N., & Heyer, M. 2016, ApJ, 831, 73CrossRefGoogle Scholar
Wallace, J., et al. 2022, ApJ, 939, 58 CrossRefGoogle Scholar
Wilson, T. L., Henkel, C., & H $\ddot{\mathrm{u}}$ ttemeister, S. 2006, A&A, 460, 533CrossRefGoogle Scholar