Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-05-04T12:44:18.207Z Has data issue: false hasContentIssue false

Treatment of human sperm with GYY4137 increases sperm motility and resistance to oxidative stress

Published online by Cambridge University Press:  30 October 2024

Yan Huang
Affiliation:
Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010 China
Runxin Gan
Affiliation:
Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008 China
Min Zhang
Affiliation:
Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010 China
Dewei Lin
Affiliation:
Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010 China
Yi Cheng*
Affiliation:
Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010 China
Xinyu Guo*
Affiliation:
Center of Reproductive Medicine, the General Hospital of Southern Theater Command, Guangzhou, 510010 China
*
Corresponding authors: Yi Cheng; Email: [email protected]; Xinyu Guo; Email: [email protected]
Corresponding authors: Yi Cheng; Email: [email protected]; Xinyu Guo; Email: [email protected]

Summary

Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

#

These authors contributed equally to this work.

References

Ahmad, G., Agarwal, A., Esteves, S.C., Sharma, R., Almasry, M., Al-Gonaim, A., AlHayaza, G., Singh, N., Al Kattan, L., Sannaa, W.M. and Sabanegh, E. (2017) Ascorbic acid reduces redox potential in human spermatozoa subjected to heat-induced oxidative stress. Andrologia 49(10), e12773. https://doi.org/10.1111/and.12773.CrossRefGoogle Scholar
Bader, R., Ibrahim, J.N., Moussa, M., Mourad, A., Azoury, J., Azoury, J. and Alaaeddine, N. (2020) In vitro effect of autologous platelet-rich plasma on H(2) O(2) -induced oxidative stress in human spermatozoa. Andrology 8(1), 191200. https://doi.org/10.1111/andr.12648.CrossRefGoogle Scholar
Chan, D., Alqawasmeh, O., Zhao, M., Chan, C., Leung, M., Chow, K., Agarwal, N., Mak, J., Wang, C., Pang, C., Li, T. and Chu, W. (2021) Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa. Asian Journal of Andrology 23(2), 150. https://doi.org/10.4103/aja.aja_58_20.Google Scholar
Cirino, G., Szabo, C. and Papapetropoulos, A. (2023) Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiological Reviews 103(1), 31276. https://doi.org/10.1152/physrev.00028.2021.CrossRefGoogle ScholarPubMed
Fatma, B.A., Nozha, C.F., Ines, D., Hamadi, A., Basma, H. and Leila, A.K. (2009) Sperm quality improvement after date seed oil in vitro supplementation in spontaneous and induced oxidative stress. Asian Journal of Andrology 11(3), 393398. https://doi.org/10.1038/aja.2008.6.CrossRefGoogle ScholarPubMed
Ghafarizadeh, A.A., Malmir, M., Naderi Noreini, S., Faraji, T. and Ebrahimi, Z. (2021) The effect of vitamin E on sperm motility and viability in asthenoteratozoospermic men: In vitro study. Andrologia 53(1), e13891. https://doi.org/10.1111/and.13891.CrossRefGoogle ScholarPubMed
Huang, Y., Wang, G., Zhou, Z., Tang, Z., Zhang, N., Zhu, X. and Ni, X. (2021) Endogenous hydrogen sulfide is an important factor in maintaining arterial oxygen saturation. Frontiers in Pharmacology 12, 677110. https://doi.org/10.3389/fphar.2021.677110.CrossRefGoogle Scholar
Lorian, K., Kadkhodaee, M., Kianian, F., Abdi, A., Ranjbaran, M., Ashabi, G. and Seifi, B. (2020) Long-term NaHS administration reduces oxidative stress and apoptosis in a rat model of left-side varicocele. Andrologia 52(2), e13496. https://doi.org/10.1111/and.13496.CrossRefGoogle Scholar
Mahfouz, R.Z., du Plessis, S.S., Aziz, N., Sharma, R., Sabanegh, E. and Agarwal, A. (2010) Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertility and Sterility 93(3), 814821. https://doi.org/10.1016/j.fertnstert.2008.10.068.CrossRefGoogle Scholar
Martin-Hidalgo, D., Bragado, M.J., Batista, A.R., Oliveira, P.F. and Alves, M.G. (2019) Antioxidants and male fertility: from molecular studies to clinical evidence. Antioxidants 8(4), 89. https://doi.org/10.3390/antiox8040089.CrossRefGoogle ScholarPubMed
Martínez-Heredia, J., de Mateo, S., Vidal-Taboada, J.M., Ballescà, J.L. and Oliva, R. (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Human Reproduction 23(4), 783791. https://doi.org/10.1093/humrep/den024.CrossRefGoogle ScholarPubMed
Nenkova, G., Stefanov, R., Chervenkov, M. and Alexandrova, A. (2016) Preventive effect of desferal on sperm motility and morphology. Cell Biochemistry and Function 34(6), 423428. https://doi.org/10.1002/cbf.3203.CrossRefGoogle ScholarPubMed
Nowicka-Bauer, K. and Nixon, B. (2020) Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants 9(2), 134. https://doi.org/10.3390/antiox9020134.CrossRefGoogle ScholarPubMed
O’Flaherty, C. and Matsushita-Fournier, D. (2017) Reactive oxygen species and protein modifications in spermatozoa. Biology of Reproduction 97(4), 577585. https://doi.org/10.1093/biolre/iox104.CrossRefGoogle ScholarPubMed
O’Flaherty, C. and Scarlata, E. (2022) Oxidative stress and reproductive function: The protection of mammalian spermatozoa against oxidative stress. Reproduction 164(6), F67f78. https://doi.org/10.1530/rep-22-0200.CrossRefGoogle ScholarPubMed
Pintus, E., Jovičić, M., Kadlec, M. and Ros-Santaella, J.L. (2020) Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Scientific Reports 10(1), 6508. https://doi.org/10.1038/s41598-020-63489-4.CrossRefGoogle ScholarPubMed
Rani, V., Deep, G., Singh, R.K., Palle, K. and Yadav, U.C. (2016) Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences 148, 183193. https://doi.org/10.1016/j.lfs.2016.02.002.CrossRefGoogle ScholarPubMed
Shekarriz, M., Thomas, A.J., Jr. and Agarwal, A. (1995) Incidence and level of seminal reactive oxygen species in normal men. Urology 45(1), 103107. https://doi.org/10.1016/s0090-4295(95)97088-6.CrossRefGoogle ScholarPubMed
Tabassum, R. and Jeong, N.Y. (2019) Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. International Journal of Medical Sciences 16(10), 13861396. https://doi.org/10.7150/ijms.36516.CrossRefGoogle ScholarPubMed
Thannickal, V.J. and Fanburg, B.L. (2000) Reactive oxygen species in cell signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology 279(6), L10051028. https://doi.org/10.1152/ajplung.2000.279.6.L1005.CrossRefGoogle ScholarPubMed
Wang, J., Wang, W., Li, S., Han, Y., Zhang, P., Meng, G., Xiao, Y., Xie, L., Wang, X., Sha, J., Chen, Q., Moore, P.K., Wang, R., Xiang, W. and Ji, Y. (2018) Hydrogen sulfide As a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxidants & Redox Signaling 28(16), 14471462. https://doi.org/10.1089/ars.2016.6968.CrossRefGoogle ScholarPubMed
Wang, S.Z., Liu, J.N., Zhou, F.F., Wang, Y.J., Zhang, P. and Cheng, S.T. (2023) Decreased Nrf2 protein level and low sperm quality in intractable spermatocystitis. Asian Journal of Andrology https://doi.org/10.4103/aja202361.Google ScholarPubMed
Xia, Y.Q., Ning, J.Z., Cheng, F., Yu, W.M., Rao, T., Ruan, Y., Yuan, R. and Du, Y. (2019) GYY4137 a H(2)S donor, attenuates ipsilateral epididymis injury in experimentally varicocele-induced rats via activation of the PI3K/Akt pathway. Iranian Journal of Basic Medical Sciences 22(7), 729735. https://doi.org/10.22038/ijbms.2019.30588.7372.Google Scholar
Yuksel, S., Erginel, B., Bingul, I., Ozluk, Y., Karatay, H., Aydın, F. and Keskin, E. (2022) The effect of hydrogen sulfide on ischemia /reperfusion injury in an experimental testicular torsion model. Journal of Pediatric Urology 18(1), 16.e1116.e17. https://doi.org/10.1016/j.jpurol.2021.11.019.CrossRefGoogle Scholar
Zhao, F., Whiting, S., Lambourne, S., Aitken, R.J. and Sun, Y.-p. (2021) Melatonin alleviates heat stress-induced oxidative stress and apoptosis in human spermatozoa. Free Radical Biology and Medicine 164, 410416. https://doi.org/10.1016/j.freeradbiomed.2021.01.014.CrossRefGoogle ScholarPubMed
Zhao, Y., Zhang, W.D., Liu, X.Q., Zhang, P.F., Hao, Y.N., Li, L., Chen, L., Shen, W., Tang, X.F., Min, L.J., Meng, Q.S., Wang, S.K., Yi, B. and Zhang, H.F. (2016) Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Scientific Reports 6, 37884. https://doi.org/10.1038/srep37884.CrossRefGoogle ScholarPubMed