Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T20:49:35.724Z Has data issue: false hasContentIssue false

suREJ proteins: new signalling molecules in sea urchin spermatozoa

Published online by Cambridge University Press:  16 July 2018

Kathryn J. Mengerink
Affiliation:
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
Gary W. Moy
Affiliation:
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
Victor D. Vacquier
Affiliation:
Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA

Extract

In Strongylocentrotus purpuratus, the fucose sulphate polymer (FSP) of egg jelly induces the sperm acrosome reaction (AR; Vacquier & Moy, 1997). Protease treatment of sperm renders the cells insensitive to FSP, indicating that sperm membrane receptors mediate the signal transduction events underlying the AR. Monoclonal antibodies to a 210 kDa membrane glycoprotein induce Ca2+ influx into sperm and trigger the AR (Trimmer et al., 1986; Moy et al., 1996). Purified 210 kDa protein binds species-specifically to egg jelly and blocks AR induction by antibody (Podell & Vacquier, 1985; Moy et al., 1996). FSP binds to the 210 kDa protein attached to Sepharose (Vacquier & Moy, 1997). Monoclonal antibodies localise the 210 kDa protein on the plasma membrane over the acrosome and also on the sperm flagellum. The 210 kDa protein has the attributes of a sperm receptor for egg jelly and is henceforth named suREJ1 (Moy et al., 1996). We describe here the three REJ proteins found thus far in S. purpuratus sperm.

Type
Special Lecture for Citizens
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, X.Z., et al. (1999). Nature 401, 383–6.Google Scholar
Hughes, J., et al. (1999). Hum. Mol. Genet. 8, 543–9.CrossRefGoogle Scholar
Ibraghimov-Beskrovnaya, O., et al. (1997). Proc. Natl. Acad. Sci. USA 94, 6397–402.CrossRefGoogle Scholar
International Polycystic Kidney Disease Consortium. (1995). Cell 81, 289–98.CrossRefGoogle Scholar
Krasnoperov, V.G., et al. (1997). Neuron 18, 925–37.CrossRefGoogle Scholar
Kuhn, H. & Thiele, B.J. (1999). FEBS Lett. 449, 711.CrossRefGoogle Scholar
Montell, C. (1997). Mol. Pharmacol. 52, 755–63.CrossRefGoogle Scholar
Moy, G.W., et al. (1996). J. Cell Biol. 133, 809–17.CrossRefGoogle Scholar
Ozeki, Y., et al. (1995). Exp. Cell Res. 216, 318–24.CrossRefGoogle Scholar
Podell, S.B. & Vacquier, V.D. (1985). J. Biol. Chem. 260, 2715–18.CrossRefGoogle Scholar
Sugita, S., et al. (1998). J. Biol. Chem. 273, 32712–24.CrossRefGoogle Scholar
Trimmer, J.S. & Vacquier, V.D. (1988). Exp. Cell Res. 175, 3751.CrossRefGoogle Scholar
Trimmer, J.S., Schackmann, R.W & Vacquier, V.D. (1986). Proc. Natl. Acad. Sci. USA 83, 9055–9.CrossRefGoogle Scholar
Tsiokas, L., et al. (1998). Proc. Natl. Acad. Sci. USA 96, 3934–9.CrossRefGoogle Scholar
Vacquier, V.D. & Moy, G.W. (1997). Dev. Biol. 192,125–35.CrossRefGoogle Scholar
Ward, C.J., et al. (1996). Proc. Natl. Acad. Sci. USA 93, 1524–8.CrossRefGoogle Scholar