Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T10:40:31.030Z Has data issue: false hasContentIssue false

Supplementation of sperm media with zinc, D-aspartate and co-enzyme Q10 protects bull sperm against exogenous oxidative stress and improves their ability to support embryo development

Published online by Cambridge University Press:  07 March 2017

Vincenza Barbato
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
Riccardo Talevi
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
Sabrina Braun
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
Anna Merolla
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
Sam Sudhakaran
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
S. Longobardi
Affiliation:
Medical Affairs Fertility, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany.
Roberto Gualtieri*
Affiliation:
Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy.
*
All correspondence to: R. Gualtieri. Dipartimento di Biologia, Università di Napoli ‘Federico II’, Complesso Universitario di Monte S Angelo, Via Cinthia, 80126 Napoli, Italy. Tel: +39 081 679212. Fax: +39 081/679233. E-mail: [email protected]

Summary

High levels of reactive oxygen species in the semen of infertile patients or spontaneously generated during in vitro sperm handling may impair sperm quality, fertilization and embryo developmental competence. We recently reported that zinc, d-aspartate and co-enzyme Q10, contained in the dietary supplement Genadis® (Merck Serono), have protective effects on human and bull sperm motility, lipid peroxidation and DNA fragmentation in vitro; furthermore, in bovine, treated spermatozoa had an improved ability to support embryo development. However, only a few studies have investigated the protective role of antioxidants during in vitro sperm handling in the presence of an exogenous oxidative stress. Herein, to simulate such conditions in an animal model, we induced exogenous oxidative stress on spermatozoa through the xanthine–xanthine oxidase system and investigated its effects on sperm function and subsequent embryo developmental competence in the presence of zinc, d-Asp and CoQ10 protection. The main results showed that exogenous oxidative stress decreased sperm motility, increased sperm DNA fragmentation, and reduced fertilization and blastocyst rates and quality. Pre-treatment with zinc, d-aspartate and co-enzyme Q10 before exogenous oxidative stress was able to prevent these effects. Supplementation of sperm culture media with zinc, d-aspartate and co-enzyme Q10 could protect sperm from oxidative stress damage during in vitro handling in assisted reproductive technologies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A. & Saleh, R.A. (2002). Role of oxidants in male infertility: rationale, significance, and treatment. Urol. Clin. North Am. 29, 817–27.CrossRefGoogle Scholar
Agarwal, A. & Allamaneni, S.S. (2004). Role of free radicals in female reproductive diseases and assisted reproduction. Reprod. Biomed. Online 9, 338–47.CrossRefGoogle ScholarPubMed
Agarwal, A. & Sekhon, L.H. (2011). Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: is it justified? Indian J. Urol. 27, 7485.CrossRefGoogle ScholarPubMed
Agarwal, A., Durairajanayagam, D. & du Plessis, S.S. (2014). Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 112.CrossRefGoogle ScholarPubMed
Agarwal, A., Virk, G., Ong, C. & du Plessis, S.S. (2014). Effect of oxidative stress on male reproduction. World J. Mens Health 32, 117.Google Scholar
Aitken, R.J., Baker, M.A., De Iuliis, G.N. & Nixon, B. (2010). New insights into sperm physiology and pathology. Review Handb. Exp. Pharmacol. 198, 99115.CrossRefGoogle Scholar
Aitken, R.J., Buckingham, D. & Harkiss, D. (1993). Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J. Reprod. Fertil. 97, 441–50.CrossRefGoogle ScholarPubMed
Balasuriya, A., Serhal, P., Doshi, A. & Harper, J.C. (2014). Processes involved in assisted reproduction technologies significantly increase sperm DNA fragmentation and phosphatidyl serine translocation. Andrologia 46, 8697.CrossRefGoogle ScholarPubMed
Burruel, V., Klooster, K.L., Chitwoodm, J., Ross, P.J. & Meyers, S.A. (2013). Oxidative damage to rhesus macaque spermatozoa results in mitotic arrest and transcript abundance changes in early embryos. Biol. Reprod. 89, 72.CrossRefGoogle ScholarPubMed
Burruel, V., Klooster, K., Barker, C.M., Pera, R.R & Meyers, S. (2014). Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci. Rep. 4, 6598.CrossRefGoogle ScholarPubMed
Chen, S.J., Allam, J.P., Duan, Y.G. & Haidl, G. (2013). Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch. Gynecol. Obstet. 288, 191–9.CrossRefGoogle ScholarPubMed
De Castro, L., de Assis, P.M., Siqueira, A.F.P., Hamilton, T.R.S., Mendes, C.M., Losano, J.D.A., Nichi, M., Visintin, J.A. & Assumpção, M.E. (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid. Med. Cell. Longev. 2016, 8213071 Google Scholar
De Lamirande, E. & Lamothe, G. (2009). Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic. Biol. Med. 46, 502–10.Google Scholar
Gawecka, J.E., Marh, J., Ortega, M., Yamauchi, Y., Ward, M.A. & Ward, W.S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8, e56385 CrossRefGoogle ScholarPubMed
Gazo, I., Shaliutina-Kolešová, A., Dietrich, M.A., Linhartová, P., Shaliutina, O. & Cosson, J. (2015). The effect of reactive oxygen species on motility parameters, DNA integrity, tyrosine phosphorylation and phosphatase activity of common carp (Cyprinus carpio L.) spermatozoa. Mol. Reprod. Dev. 82, 4857.CrossRefGoogle ScholarPubMed
Gharagozloo, P. & Aitken, R.J. (2011). The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum. Reprod. 26, 1628–40.CrossRefGoogle ScholarPubMed
Gualtieri, R., Barbato, V., Fiorentino, I., Braun, S., Rizos, D., Longobardi, S. & Talevi, R. (2014). Treatment with zinc, d-aspartate, and co-enzyme Q10 protects bull sperm against damage and improves their ability to support embryo development. Theriogenology 82, 592–8.CrossRefGoogle ScholarPubMed
Hagedorn, M., McCarthy, M., Carter, V.L. & Meyers, S.A. (2012). Oxidative stress in zebrafish (Danio rerio) sperm. PLoS One 7, e39397.CrossRefGoogle ScholarPubMed
Henkel, R., Kierspel, E., Stalf, T., Mehnert, C., Menkveld, R., Tinneberg, H.R., Schill, W.B. & Kruger, T.F. (2005). Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil. Steril. 83, 635–42CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J.L., Handrow, R.R., Sims, M.M. & First, N.L. (1989). Capacitation of bovine spermatozoa by oviduct fluid. Biol. Reprod. 40, 1020–5.CrossRefGoogle ScholarPubMed
Pasqualotto, F.F., Sharma, R.K., Pasqualotto, E.B. & Agarwal, A. (2008). Poor semen quality and ROS-TAC scores in patients with idiopathic infertility. Urol. Int. 81, 263–70.Google Scholar
SAS STAT User's Guide (1988). Release 6.03 edn. Cary, NC: Statistical Analysis System Institute.Google Scholar
Shaliutina-Kolešová, A., Cosson, J., Lebeda, I., Gazo, I., Shaliutina, O., Dzyuba, B. & Linhart, O. (2015). The influence of cryoprotectants on sturgeon (Acipenser ruthenus) sperm quality, DNA integrity, antioxidant responses, and resistance to oxidative stress. Anim. Reprod. Sci. 159, 6676.Google Scholar
Shaliutina-Kolešová, A., Gazo, I., Cosson, J. & Linhart, O. (2014). Protection of common carp (Cyprinus carpio L.) spermatozoa motility under oxidative stress by antioxidants and seminal plasma. Fish Physiol. Biochem. 40, 1771–81.CrossRefGoogle ScholarPubMed
Showell, M.G., Mackenzie-Proctor, R., Brown, J., Yazdani, A., Stankiewicz, M.T. & Hart, R.J. (2014). Antioxidants for male subfertility. Cochrane Database Syst. Rev. 12, CD007411.Google Scholar
Simões, R., Feitosa, W.B., Siqueira, A.F., Nichi, M., Paula-Lopes, F.F., Marques, M.G., Peres, M.A., Barnabe, V.H., Visintin, J.A. & Assumpção, M.E. (2013). Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction 146, 433–41.Google Scholar
Talevi, R., Barbato, V., Fiorentino, I., Braun, S., Longobardi, S. & Gualtieri, R. (2013). Protective effects of in vitro treatment with zinc, d-aspartate and co-enzyme Q10 on human sperm motility, lipid peroxidation and DNA fragmentation. Reprod. Biol. Endocrinol. 11, 81.Google Scholar
Tervit, H.R., Whittingham, D.G. & Rowson, L.E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–7.Google Scholar
Thomson, L.K., Fleming, S.D., Aitken, R.J., De Iuliis, G.N., Zieschang, J.A. & Clark, A.M. (2009). Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum. Reprod. 24, 2061–70.CrossRefGoogle ScholarPubMed
Tremellen, K. (2008). Oxidative stress and male infertility—a clinical perspective. Hum. Reprod. Update 14, 243–58.Google Scholar
Zribi, N., Feki Chakroun, N., El Euch, H., Gargouri, J., Bahloul, A. & Ammar Keskes, L. (2010). Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil. Steril. 93, 159–66.CrossRefGoogle ScholarPubMed