Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T19:07:35.519Z Has data issue: false hasContentIssue false

Supplementation of fructose in chemically defined protein-free medium enhances the in vitro development of bovine transgenic cloned embryos

Published online by Cambridge University Press:  01 August 2007

M.M. Uddin Bhuiyan*
Affiliation:
Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
S-K. Kang
Affiliation:
Laboratory of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
B-C. Lee
Affiliation:
Laboratory of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
*
All correspondence to: M.M. Uddin Bhuiyan, Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh. Tel: +880 1715 020254. Fax: +880 91 55810. e-mail: [email protected]

Summary

The present study evaluated the possible embryotrophic role of fructose supplementation in chemically defined protein-free KSOM on in vitro development of bovine transgenic cloned embryos. Bovine fetal fibroblasts transfected with expression plasmids for bovine prion protein (PrP) mutant gene with GFP marker gene were used as donor nuclei for reconstruction of slaughterhouse-derived in vitro matured oocytes. The reconstructed oocytes were cultured in KSOM supplemented with 0.01% PVA (KSOM–PVA) at 39 °C in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2 for 192 h. In Experiment 1, when reconstructed oocytes were cultured in KSOM–PVA supplemented with glucose (0.2 mM), fructose (1.5 mM) or combined glucose and fructose (0.2 and 1.5 mM, respectively), significantly (p < 0.05) higher blastocyst (19.2%) and hatching/hatched blastocyst (13.1%) formation rates were obtained in combined fructose and glucose supplemented medium than glucose supplemented counterpart (10.0% and 5.7%, respectively). In Experiment 2, when reconstructed oocytes were cultured in KSOM–PVA supplemented with 0.0, 0.2, 1.5, 3.0 and 5.6 mM fructose in combination with 0.2 mM glucose, the blastocyst formation rate was significantly higher (17.6%) in 1.5 mM fructose supplemented group than that of no fructose supplemented counterpart (9.7%; p > 0.05). In conclusion, supplementation of combined fructose (1.5 mM) and glucose (0.2 mM) in chemically defined protein-free KSOM enhances the in vitro development of bovine transgenic cloned embryos.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (2003). Koreans rustle up madness-resistant cows. Nature 426, 743.Google Scholar
Arat, S., Gibbons, J., Rzucidlo, S.J., Respess, D.S. & Tumlin, M. (2002). In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biol. Reprod. 66, 1768–74.CrossRefGoogle ScholarPubMed
Augustin, R., Pocar, P., Navarrete-Santose, A., Wrenzycki, C., Gandolfi, F., Niemann, H. & Fischer, B. (2001). Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Mol. Reprod. Dev. 60, 370–6.CrossRefGoogle ScholarPubMed
Barnett, D.K. & Bavister, B.D. (1996). What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol. Reprod. Dev. 43, 105–33.3.0.CO;2-4>CrossRefGoogle Scholar
Barnett, D.K., Clayton, M.K., Kimura, J. & Bavister, B.D. (1997). Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol. Reprod. Dev. 48, 227–37.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Bhuiyan, M.M.U., Cho, J.K., Jang, G., Park, E.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004a). Effect of protein supplementation in potassium simplex optimization medium on preimplantation development of bovine non-transgenic and transgenic cloned embryos. Theriogenology 62, 1403–16.CrossRefGoogle ScholarPubMed
Bhuiyan, M.M.U., Cho, J.K., Jang, G., Park, E.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004b). Effect of transfection and passage number of ear fibroblasts on in vitro development of bovine transgenic nuclear transfer embryos. J. Vet. Med. Sci. 66, 257–61.CrossRefGoogle ScholarPubMed
Bhuiyan, M.M.U., Kang, S.K. & Lee, B.C. (2007). Effects of fructose supplementation in chemically defined protein-free medium on development of bovine in vitro fertilized embryos. Anim. Reprod. Sci. (in press; doi:10.1016/j.anireprosci.2007.02009). Online published on 22 February 2007.CrossRefGoogle Scholar
Biggers, J.D., McGinnis, L.K. & Raffin, M. (2000). Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63, 281–93.Google Scholar
Bordignon, V., Keyston, R., Lazaris, A., Bilodeau, A.S., Pontes, J.H.F., Arnold, D., Fecteau, G., Keefer, C. & Smith, L.C. (2003). Transgenic expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells. Biol. Reprod. 68, 2013–23.CrossRefGoogle ScholarPubMed
Chatot, C.L., Ziomek, C.A., Bavister, B.D., Lewis, J.L. & Torres, I. (1989). An improved culture medium supports development of random-bred one-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 7988.Google Scholar
Chen, S.H., Vaught, T.D., Monahan, J.A., Boone, J., Emsile, E., Jobst, P.M., Lamborn, A.E., Schnieke, A., Robertson, L., Colman, A., Dai, Y., Polejaeva, I.A. & Ayares, D.L. (2002). Efficient production of transgenic cloned calves using preimplantation screening. Biol. Reprod. 67, 1488–92.Google Scholar
Choi, Y.H., Lee, b.c., Lim, J.M., Kang, S.K. & Hwang, W.S. (2002). Optimization of culture medium for cloned bovine embryos and its influence on pregnancy and delivery outcome. Theriogenology 58, 1187–97.CrossRefGoogle ScholarPubMed
Chung, Y.G., Mann, M.R.W., Bartolomei, M.S. & Latham, K.E. (2002). Nuclear-cytoplasmic “tug of war” during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66, 1178–84.CrossRefGoogle ScholarPubMed
Cibelli, J.B., Stice, S.L., Golueke, P.J., Jerry, J., Blackwell, C., Ponce, dL.F. & Robl, J.M. (1998). Cloned transgenic claves produced from nonquescent fetal fibroblasts. Science 280, 1256–8.CrossRefGoogle Scholar
Conaghan, J., Handyside, A.H., Winston, R.M. & Leese, H.L. (1993). Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99, 8795.Google Scholar
Davidson, N.O., Hausman, A.M., Ifkovits, C.A., Buse, J.B., Gould, G.W., Burant, C.F. & Bell, G.I. (1992). Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 262, C795C800.Google Scholar
Denning, C., Burl, S., Ainsile, A., Bracken, J., Dinnyes, A., Fletcher, J., King, T., Ritchie, M., Ritchie, W.A., Rollo, M., de Sousa, P., Travers, A., Wilmut, I. & Clark, A.J. (2001). Deletion of the alpha(1,3)galactosyltransferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 9, 559–62.CrossRefGoogle Scholar
Forsberg, E.J., Strelchenko, N.S., Augenstein, M.L., Betthauser, J.M., Childs, L.A., Eilertsen, K.J., Enos, J.M., Forsythe, T.M., Golueke, P.J., Koppang, R.W., Lange, G., Lesmeister, T.L., Mallon, K.S., Mell, G.D., Misica, p.m., Pace, M.M., Pfister–Genskow, M., Voelker, G.R., Watt, S.R. & Bishop, M.D. (2002) Production of cloned cattle from in vitro systems. Biol. Reprod. 67, 327–33.CrossRefGoogle ScholarPubMed
Guyader-Joly, C., Khatchadourian, C. & Menezo, Y. (1996). Comparative glucose and fructose incorporation by in vitro produced bovine embryos. Zygote 4, 8591.CrossRefGoogle ScholarPubMed
Han, Y.M., Kang, Y.K., Koo, D.B. & Lee, K.K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 3344.CrossRefGoogle ScholarPubMed
Ho, Y., Wigglesworth, K., Eppig, J.J. & Schultz, R.M. (1995). Preimplantation development of mouse embryos: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–8.CrossRefGoogle ScholarPubMed
Jang, G., Lee, b.c., Kang, S.K. & Hwang, W.S. (2003). Effect of glycosaminoglycans on the preimplantation development of embryos derived from in vitro fertilization and somatic cell nuclear transfer. Reprod. Fertil. Dev. 15, 17.CrossRefGoogle ScholarPubMed
Khurana, N.K. & Niemann, H. (2000). Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol. Reprod. 62, 847–56.CrossRefGoogle ScholarPubMed
Kim, J.H., Niwa, K., Lim, J.M. & Okuda, K. (1993). Effects of phosphate, energy substrates, and amino acids on development of in vitro-matured, in vitro-fertilized bovine oocytes in a chemically defined, protein-free culture medium. Biol. Reprod. 48, 1320–5.CrossRefGoogle Scholar
Kishi, J., Noda, Y., Narimoto, K., Umaoka, Y. & Mori, T. (1991). Block to development in cultured rat one-cell embryos is overcome using medium HECM-1. Hum. Reprod. 6, 1445–8.CrossRefGoogle Scholar
Koo, D.B., Kang, Y.K., Choi, Y.H., Park, J.S., Kim, H.N., Oh, K.B., Son, D.S., Park, H., Lee, K.K. & Han, Y.M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–92.CrossRefGoogle ScholarPubMed
Kwun, J, Chang, K, Lim, J, Lee, E, Lee, B, Kang, S, Hwang, W. (2003) Effects of exogenous hexoses on bovine in vitro fertilized and cloned embryo development: improved blastocysts formation after glucose replacement with fructose in a serum-free culture medium. Mol. Reprod. Dev. 65, 167–74.CrossRefGoogle Scholar
Lawitts, J.A. & Biggers, J.D. (1991). Overcoming the 2-cell block by modifying standard components in a mouse culture medium. Biol. Reprod. 45, 245–51.CrossRefGoogle Scholar
Ludwig, T.E., Lane, M. & Bavister, B.D. (2001). Differential effect of hexoses on hamster embryo development in culture. Biol. Reprod. 64, 1366–74.Google Scholar
Manson, J. & Tuzi, N.L. (2001). Transgenic models of the transmissible spongiform encephalopathies. Exp. Rev. Mol. Med. 2001, 1–15. (http://www.ermm.cbcu.cam.ac.uk/01002952h.htm)Google Scholar
Miyoshi, K., Funahashi, H., Okuda, K. & Niwa, K. (1994). Development of rat one-cell embryos in a chemically defined medium: effects of glucose, phosphate and osmolarity. J. Reprod. Fertil. 100, 21–6.Google Scholar
Niemann, H. & Kues, W.A. (2000). Transgenic livestock: premises and promises. Anim. Reprod. Sci. 60–61, 277–93.CrossRefGoogle ScholarPubMed
Quinn, P. (1995). Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J. Assist. Reprod. Genet. 12, 97105.CrossRefGoogle Scholar
Renard, J.P., Zhou, Q., Lebourhis, D., Chavatte-Palmer, P., Hue, I., Heyman, Y. & Vignon, X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology 57, 203–22.CrossRefGoogle ScholarPubMed
Rieger, D., Loskutoff, N.M. & Betteridge, K.J. (1992). Develop-mentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–57.Google Scholar
Rosenkrans, C.F. Jr., Zeng, G.Q., McNamara, G.T., Schoff, P.K. & First, N.L. (1993). Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod. 49, 459–62.Google Scholar
Schini, S.A. & Bavister, B.D. (1988). Two-cell block to develo-pment of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–92.CrossRefGoogle Scholar
Scott, L. & Whittingham, D.G. (1996). Influence of genetic background and media components on the development of mouse embryos in vitro. Mol. Reprod. Dev. 4, 336–46.3.0.CO;2-R>CrossRefGoogle Scholar
Suga, T. & Masaki, T. (1973). Studies on the secretions of the cow. 6. Sugar and poly constituents in the luminal fluid of the bovine uterus. Jpn J. Anim. Reprod. 18, 143–7.CrossRefGoogle Scholar
Tavares, L.M.T., Magnusson, V., Missen, V.L.L., Lima, A.S., Caetano, H.V.A. & Visintin, J.A. (2002). Development of in vitro-matured and fertilized bovine embryos cultured in CR2AA, KSOMAA and SOFAA (abstract). Theriogenology 57, 528.Google Scholar
Thompson, J.G., Simson, A.C., Pugh, P.A. & Tervit, H.R. (1992). Requirement of glucose during in vitro culture of sheep preimplantation embryos. Mol. Reprod. Dev. 31, 253–7.CrossRefGoogle ScholarPubMed
Thouas, G.A., Korfiatis, N.A., French, A.J., Jones, G.M. & Trounson, A.O. (2001). Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–9.Google Scholar
Vanroose, G., Van Soom, A. & de Kruif, A. (2001). From co-culture to defined medium: state of the art and practical considerations. Reprod. Dom. Anim. 36, 25–8.Google Scholar
Wrenzycki, C., Hermann, D., Carnwath, J.W. & Niemann, H. (1999). Alterations in the relative gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 818.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Zakhartchenko, V., Mueller, S., Alberio, R., Schernthaner, W., Stojkovic, M., Wenigerkind, H., Wanke, R., Lassnig, C., Mueller, M., Wolf, E. & Brem, G. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev. 60, 362–9.CrossRefGoogle ScholarPubMed