Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T11:39:13.089Z Has data issue: false hasContentIssue false

Study of the first blastomeres in Coho salmon (Oncorhynchus kisutch)

Published online by Cambridge University Press:  11 July 2012

Brian Effer Roldán*
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco-Chile. Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22 08 Sector San Pedro Alejandrino, Santa Marta-Colombia.
Rubén Sánchez Rueda
Affiliation:
Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22 08 Sector San Pedro Alejandrino, Santa Marta-Colombia.
Andrea Ubilla Madrid
Affiliation:
Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22 08 Sector San Pedro Alejandrino, Santa Marta-Colombia.
Elías Figueroa Villalobos
Affiliation:
Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22 08 Sector San Pedro Alejandrino, Santa Marta-Colombia.
Iván Valdebenito Isler
Affiliation:
Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22 08 Sector San Pedro Alejandrino, Santa Marta-Colombia.
*
All correspondence to: Brian Effer Roldán. Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco-Chile. e-mail: [email protected]

Summary

There is a lack of information on the morphology of the first blastomeres that could be used as a diagnostic tool for the first stages of embryonic development for Coho salmon. The purpose of this investigation, therefore, was to characterize morphometrically the first blastomeres of Coho salmon (Oncorhynchus kisutch). In total, 660 embryonic discs from a pool of eggs that had been fertilized and incubated at 5°C and after 19 h of incubation were extracted and photographed. Of these, 20 microphotographs of blastodiscs of normal appearance were analyzed morphologically (control blastodiscs: CB) and 100 random microphotographs from the whole group were classified as either symmetrical or asymmetrical according to their morphology and then compared with the CB. The length and width of each blastomere and the proportions of length and width were measured to determine symmetry in the embryos at the 4-cell stage. Seven categories were created to characterize the blastomeres: 38% normal (G1); 26% unequal (G2); 10% ‘pie-shaped’ (G3); 10% amorphous (G4); 8% with three equal and one unequal blastomere (G5); 6% ‘clover-shaped’ blastomeres (G7), and 3% with inclusions. The mean of the proportions of lengths and widths of the groups of blastomeres that were measured was 0.87 ± 0.08 and 0.85 ± 0.07, respectively. The morphometric results that were obtained in this investigation are compared with the results observed by other authors for teleostei and are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aegerter, S. & Jalabert, B. (2004). Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout, Oncorhynchus mykiss. Aquaculture 231, 5971.CrossRefGoogle Scholar
Avery, T. & Brown, J. (2005). Investigating the relationship among abnormal patterns of cell cleavage, egg mortality and early larval condition in Limanda ferruginea. J. Fish Biol. 67, 890–6.CrossRefGoogle Scholar
Avery, T., Killen, S. & Hollinger, T. (2009). The relationship of embryonic development, mortality, hatching success, and larval quality to normal or abnormal early embryonic cleavage in Atlantic cod, Gadus morhua. Aquaculture 289, 265–73.CrossRefGoogle Scholar
Ballard, W. (1973). Morphogenetic movements in Salmo gairdneri Richardson. J. Exp. Zool. 184, 2748.CrossRefGoogle Scholar
Barnes, M., Hanten, R., Sayler, W. & Cordes, R. (2000). Viability of inland fall Chinook spawn containing overripe eggs and the reliability of egg viability estimates. North Am. J. Aquacult. 62, 237–9.2.3.CO;2>CrossRefGoogle Scholar
Bobe, J. & Labbé, C. (2010). Egg and sperm quality in fish. Gen. Comp. Endocrinol. 165, 535–48.CrossRefGoogle ScholarPubMed
Bromage, N., Bruce, M., Basavaraja, N. & Rana, K. (1994). Egg quality determinants in finfish: the role of overripening with special reference to the timing of stripping in the Atlantic halibut Hippoglossus hippoglossus. J. World Aquacult. Soc. 25, 1321.CrossRefGoogle Scholar
Gorodilov, Y. (1996). Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Environ. Biol. Fish. 47, 109–27.CrossRefGoogle Scholar
Hamoutene, D., Lush, L., Drover, D. & Walsh, A. (2009). Investigation of the temporal effects of spawning season and maternal and parental differences on egg quality in Atlantic cod Gadus morhua L. broodstock. Aquacult. Res. 40, 1668–79.CrossRefGoogle Scholar
Hershberger, W. & Hostuttler, M. (2005). Variation in time first cleavage in rainbow trout Oncorhynchus mykiss embryos: a mayor factor in induction of tetraploids. J. World Aquacult. Soc. 36, 96102.CrossRefGoogle Scholar
Kjørsvik, E., Mangor-Jensen, A. & Holmefjord, I. (1990). Egg quality in fishes. Adv. Marine Biol. 26, 71113.CrossRefGoogle Scholar
Kjørsvik, E., Hoehne-Reitan, K. & Reitan, K. (2003). Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 227, 920.CrossRefGoogle Scholar
Lahnsteiner, F. (2000). Morphological, physiological and biochemical parameters characterizing the over-ripening of rainbow trout eggs. Fish Physiol. Biochem. 23, 107–18.CrossRefGoogle Scholar
Lahnsteiner, F. & Patzner, R. (2002). Rainbow trout egg quality determination by the relative weight increase during hardening: a practical standardization. J. Appl. Ichthyol. 18, 24–6.CrossRefGoogle Scholar
Lahnsteiner, F., Weismann, T. & Patzner, R. (1999). Physiological and biochemical parameters for egg quality determination in lake trout, Salmo trutta lacustris. Fish Physiol. Biochem. 20, 375–88.CrossRefGoogle Scholar
Moran, D., Smith, C., Gara, B. & Poortenaar, C. (2007). Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833). Aquaculture 262, 95104CrossRefGoogle Scholar
Ostrander, G., Landolt, M. & Kocan, R. (1988). The ontogeny of Coho salmon (Oncorhynchus kisutch) behavior following embryonic exposure to benzo[a]pyrene. Aquatic Toxicol. 13, 325–46.CrossRefGoogle Scholar
Ostrander, G., Landolt, M. & Kocan, R. (1989). Whole life history studies of Coho salmon (Oncorhynchus kisutch) following embryonic exposure to benzo[a]pyrene. Aquatic Toxicol. 15, 109–25.CrossRefGoogle Scholar
Pavlov, D. & Emel'yanova, N. (2008). Morphological criteria of egg quality in marine fishes: activation and cleavage of eggs of Zebrasoma scopas (Acanthuridae). J. Ichthyol. 48, 533–48.CrossRefGoogle Scholar
Pavlov, D. & Moksness, E. (1994). Reproductive biology, early ontogeny, and effect of temperature on development in wolfish: comparison with salmon. Aquaculture Int. 2, 133–53.CrossRefGoogle Scholar
Penney, R., Lush, P., Wade, J., Brown, J., Parrish, C. & Burton, M. (2006). Comparative utility of egg blastomere morphology and lipid biochemistry for prediction of hatching success in Atlantic cod, Gadus morhua L. Aquacult. Res. 37, 272–83.CrossRefGoogle Scholar
Phillips, R. & Campbell, H. (1962). The embryonic survival of Coho salmon and steelhead trout as influenced by some enviromental conditions in gravel beds. Pac. Mar. Fish Commun. Rep. 14, 6073.Google Scholar
Piferrer, F. & Donaldson, E. (1989). Gonadal differentiation in Coho salmon, Oncorhynchus kisutch, after a single treatment with androgen or estrogen at different stages during ontogenesis. Aquaculture 77, 251–62.CrossRefGoogle Scholar
Rani, M. (2005). Prediction of Larval Viability Based on Egg Quality Parameters and Early Cleavage Patterns in the Experiments of Triploidy Induction in Atlantic Cod, Gadus morhua L. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in international fisheries management. 64 pp. Norwegian College of Fishery Science, University of Tromso–Norway.Google Scholar
Rideout, R., Trippel, E. & Litvak, M. (2004). Predicting haddock embryo viability based on early cleavage patterns. Aquaculture 230, 215–28.CrossRefGoogle Scholar
Samarin, A., Ahmadi, M., Azuma, T., Rafiee, G., Amiri, B. & Naghavi, M. (2008). Influence of the time to egg stripping on eyeing and hatching rates in rain bow trout Oncorhynchus mykiss under cold temperatures. Aquaculture 278, 195–8.CrossRefGoogle Scholar
Shields, R., Brown, N. & Bromage, N. (1997). Blastomere morphology as a predictive measure of fish egg viability. Aquaculture 155, 112.CrossRefGoogle Scholar
Shumway, D., Warren, C. & Doudoroff, P. (1964). The influence of oxygen concentrations and water movement on the growth of steelhead trout and Coho salmon embryos. Trans. Am. Fish. Soc. 93, 342–56.CrossRefGoogle Scholar
Valdebenito, I., Sánchez, R., Effer, B. & Ubilla, A. (2012). Morphometric characterization of the first blastomeres of rainbow trout (Oncorhynchus mykiss). Zygote Epub ahead of print.CrossRefGoogle Scholar
Vásquez, P., Llanos-Rivera, A. & Castro, L. (2010). Anormalidades durante el desarrollo embrionario de sardina común, Strangomera bentincki en el ambiente natural. Revista de Biología Marina y Oceanografía 45, 177–85.CrossRefGoogle Scholar