Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:00:14.407Z Has data issue: false hasContentIssue false

Structure and macromolecular composition of the zebrafish egg chorion

Published online by Cambridge University Press:  26 September 2008

Daniele Bonsignorio
Affiliation:
Department of Biology, University of Milan, Milano, Italy
Lucia Perego
Affiliation:
Department of Biology, University of Milan, Milano, Italy
Luca Del Giacco
Affiliation:
Department of Biology, University of Milan, Milano, Italy
Franco Cotelli*
Affiliation:
Department of Biology, University of Milan, Milano, Italy
*
Franco Cotelli, Dipartimento di Biologia, Universit´ di Milano, via Celoria, 26, 20133 Milan, Italy. Telephone: +39 2 26604470. Fax: +39 2 26604462. e-mail: [email protected].

Summary

The chorion is the acellular envelope surrounding mature eggs of teleostean fish. The macromolecular composition of the zebrafish (Danio rerio) egg chorion, organised as a three-layered structure, has been analysed. SDS-PAGE analysis, under reducing conditions, of isolated and purified chorions revealed a reproducible pattern of four major polypeptides (116, 97, 50 and 43kDa) and several minor bands. Lectin binding assays showed that both the 116 kDa and 50kDa proteins were recognised by concanavalin agglutinin (Con A), Galanthus nivalis agglutinin (GNA), Sambucus nigra bark agglutinin (SNA) and Ricinus communis agglutinin (RCA 120), suggesting that these polypeptides are N-linked glycoproteins. By contrast, neither the 97 kDa nor the 43 kDa polypeptides were stained by these lectins, indicating that these polypeptides are not glycosylated. Amino acid analysis also showed significant differences in the average content of some amino acids, for example serine and proline, when compared with previous reports.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. (1967). The formation of the primary envelope during oocyte differentiation in teleosts. J. Cell Biol 35, 193211.CrossRefGoogle ScholarPubMed
Begovac, P.C. & Wallace, R.A. (1989). Major vitelline envelope proteins in pipefish oocytes originate within the follicle and are associated with the Z3 layer. J. Exp. Zool. 51, 5673.CrossRefGoogle Scholar
Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantifies of protein utilizing the principle of protein dye-binding. Anal. Biochem. 72, 248.CrossRefGoogle Scholar
Brivio, M.F., Bassi, R. & Cotelli, F. (1991). Identification and characterization of the major components of the Oncorhynchus mykiss egg chorion. Mol. Reprod. Dev. 28, 8593.CrossRefGoogle ScholarPubMed
Cotelli, F., Andronico, F., Brivio, M. & Lora, Lamia C. (1988). Structure and composition of the fish egg chorion (Carassius auratus). J. Ultrastruct. Mol. Struct. Res. 99, 70–8.CrossRefGoogle Scholar
Dumont, J.N. & Brummett, A.R. (1980). The vitelline envelope chorion and micropyle of Fundulus heteroclitus eggs. Gamete Res. 3, 2544.CrossRefGoogle Scholar
Folz, K.R. (1995). Sperm binding proteins. Int. Rev. Cytol. 163, 249303.CrossRefGoogle Scholar
Guraya, S. (1986). The cell and molecular biology of fish oogenesis. Monogr. Dev. Biol. 18.Google ScholarPubMed
Hagenmaier, H.E. (1985). The hatching process in fish embryos. VIII. The chemical composition of the trout chorion (zona radiata) and its modification by the action of the hatching enzyme. Zool. Jahrb., Abt. Allg. Zool. Physiol. Tiere. 78, 509–20.Google Scholar
Hagenmaier, H.E., Schmitz, I. & Föhles, J. (1976). Zum Vorkommen von lsopeptidbindungen in der Eihülle der Regenbogenforelle (Samo gairdneri Rich). Z. Physiol. Chem. 357, 1435–8.CrossRefGoogle Scholar
Hamazaki, T.S., Iuchi, I. & Yamagami, K. (1987). Isolation and partial characterization of a [spawning female-specific substance] in the teleost Oryzias latipes. J. Exp. Zool. 242, 343–9.CrossRefGoogle Scholar
Hart, N.H. & Collins, G.C. (1991). An electron microscope and freeze-fracture study of the egg cortex of Brachydanio rerio. Cell Tissue Res. 265, 317–28.CrossRefGoogle ScholarPubMed
Hart, N.H. & Donovan, M. (1983). Fine structure of the chorion and site of sperm entry in the egg of Brachydanio rerio. J. Exp. Zool. 227, 277–96.CrossRefGoogle Scholar
Haselbeck, A., Schickaneder, E., von der Eltz, H. & Hösel, W. (1990). Structural characterization of glycoprotein carbohydrate chains by using digoxigenin-labeled lectins on blots. Anal. Biochem. 191, 2530.CrossRefGoogle Scholar
Hisaoka, K.K. & Firlit, C.F. (1962). Ovarian cycle and egg production in the Zebrafish, Brachydanio rerio. Copeia 4, 788–92.CrossRefGoogle Scholar
Hyllner, S.J., Oppen-Berntsen, D.O., Helvik, I.V., Walther, B.T. & Haux, C. (1991). Oestradiol-17β induces the major vitelline envelope proteins in both sexes in teleosts. J. Endocrinol. 131, 229–36.CrossRefGoogle ScholarPubMed
Hyllner, S.J., Femandez-Palacios, Barber H., Larsson, D.G.J. & Haux, C. (1995). Amino acid composition and endocrine control of vitelline envelope proteins in European sea bass (Dicentrachus labrax) and gilthead sea bream (Sparus aurata). Mol. Reprod. Dev. 41, 339–47.CrossRefGoogle Scholar
Iuchi, I. & Yamagami, K. (1976). Major glycoproteins solubilized from the teleostean egg membrane by the action of the hatching enzyme. Biochim. Biophys. Acta. 53, 240–9.CrossRefGoogle Scholar
Kaighn, M.E. (1964). A biochemical study of the hatching process in Fundulus heteroclitus. Dev. Biol. 9, 5680.CrossRefGoogle ScholarPubMed
Kobayashi, W. (1982). The fine structure and amino acid composition of the envelope of the chum salmon egg. J. Fac. Sci. Hokkaido Univ. Ser. VI Zool. 23, 114.Google Scholar
Konigsberg, W.H. & Henderson, L. (1983). Removal of SDS from proteins by ion-pair extraction. Methods Enzymol. 91, 254–9.CrossRefGoogle Scholar
Kornfeld, R. & Kornfeld, S. (1976). Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 45, 217.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage. T. Nature. 227, 680–5.CrossRefGoogle ScholarPubMed
Ohzu, E. & Kusa, M. (1981). Amino acid composition of the egg chorion of rainbow trout. Annot. Zool. Japon. 54, 241–4.Google Scholar
Oppen-Berntsen, D.O., Hyllner, S.J., Haux, C., Helvik, J.V. & Walther, B.T. (1992). Eggshell zona radiata-proteins from cod (Gadus morhua): extra-ovarian origin and induction by oestradiol-173β. Int. J. Dev. Biol. 36, 247–54.Google Scholar
Scapigliati, G., Carcupino, M., Taddei, A.R. & Mazzini, M. (1994). Characterization of the main egg envelope proteins of the sea bass Dicentrarchus labrax (Teleostea, Serranidea). Mol. Reprod. Dev. 38, 4853.CrossRefGoogle Scholar
Selman, K., Wallace, R.A., Sarka, A. & Qi, X. (1993). Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218, 203–24.CrossRefGoogle ScholarPubMed
Tarentino, A.L., Gomez, C.M. & Plummer, T.H. (1985). Deglycosylation of asparagine-linked glycan by peptide-N-glycosidase. F. Biochemistry. 24,4665–71.CrossRefGoogle ScholarPubMed
Tesoriero, J.V. (1977 a). Formation of the chorion in the teleost Oryzias latipes. I. Morphology of early oogenesis. J. Ultraslruct. Res. 59, 282–91.CrossRefGoogle ScholarPubMed
Tesoriero, J.V. (1977 b). Formation of the chorion in the teleost Oryzias latipes. II. Polysaccharide cytochemistry of early oogenesis. J. Histochem. Cytochem. 25, 1376–9.CrossRefGoogle ScholarPubMed
Tesoriero, J.V. (1977 c). Formation of the chorion in the teleost Oryzias latipes. III. Autoradiography of 3H-proline incorporation. J. Ultrastruct. Res. 64, 315–26.CrossRefGoogle Scholar
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheet: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4.CrossRefGoogle ScholarPubMed
Ulrich, E. (1969). Etude des ultrastructures au cours de l'ovogenèse d';un poisson Téléosteen, le Danio, Brachydanio rerio. J. Microscop. 8, 447–78.Google Scholar
Westerfield, M. (1995). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). Eugene, OR: University of Oregon Press.Google Scholar
Wourms, J.P. (1976). Annual fish oogenesis. I. Differentiation of the mature oocyte and formation of the primary envelope. Dev. Biol. 50, 338–54.CrossRefGoogle ScholarPubMed