Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T10:09:30.007Z Has data issue: false hasContentIssue false

Structural analysis of the embryonic development in Brycon cephalus (Günther, 1869)

Published online by Cambridge University Press:  27 November 2009

Juliana Sversut de Alexandre*
Affiliation:
São Paulo State University – FMVZ, Animal Production Departament, 18610 – 000, P.O Box: 560, Botucatu – SP, Brazil.
Alexandre Ninhaus-Silveira
Affiliation:
São Paulo State University – FEIS, Biology and Zootecny Departament, 15385 – 000, P.O. Box: 31, Ilha Solteira – SP, Brazil.
Rosicleire Veríssimo-Silveira
Affiliation:
São Paulo State University – FEIS, Biology and Zootecny Departament, 15385 – 000, P.O. Box: 31, Ilha Solteira – SP, Brazil.
Hellen Buzollo
Affiliation:
São Paulo State University – FEIS, Biology and Zootecny Departament, 15385 – 000, P.O. Box: 31, Ilha Solteira – SP, Brazil.
José Augusto Senhorini
Affiliation:
Centro de Pesquisa e Gestão de Recursos Pesqueiros Continentais – ICMBIO, Pirassununga-SP, Brazil.
Milena Penteado Chaguri
Affiliation:
São Paulo State University – FEIS, Biology and Zootecny Departament, 15385 – 000, P.O. Box: 31, Ilha Solteira – SP, Brazil.
*
All correspondence to: Juliana Sversut de ALEXANDRE. São Paulo State University – FMVZ, Animal Production Departament, 18610 – 000, P.O Box: 560, Botucatu – SP, Brazil. Tel:/Fax: +55 18 37431285. e-mail: [email protected]

Summary

The embryogenesis of Brycon cephalus was established in seven stages: zygote, cleavage, blastula, gastrula, segmentation, larval and hatching, in an incubation period of 11 h (26°C). The zygote phase was observed directly after fertilization and egg hydration. Cleavage began at 0.5 h of incubation and extended up to the morula phase (1.5 h; +100 blastomeres). Cleavage was meroblastic and underwent the following division pattern: the first five divisions were vertical and perpendicular to each other, following the model 2 × 2, 4 × 2, 4 × 4 and 4 × 8. The sixth division was horizontal and occurred at 1.25 h after fertilization, giving rise to two cell layers (4 × 8 × 2) with 64 blastomeres. At the blastula stage (1.25–1.5 h), an irregular space between the blastomeres, the blastocoele, could be detected and the periblast structure initiated. The gastrula (1.75–6.0 h) was characterized by the morphogenetic movements of epiboly, convergence and cell involution, and formation of the embryonic axis. The segmentation stage (7–9 h) comprised the development of somites, the notochord, optic, otic and Kupffer's vesicles, neural tube, primitive intestine and ended with the release of the tail. The larval stage (up to 10 h) was characterized by the presence of 30 somites and growth and elongation of the larvae. At the hatching stage, the embryos presented more than 30 somites and exhibited swimming movements and a soft chorion. The blastomeres presented euchromatic nuclei, indicating a high mitotic activity and many yolk globules in the cytoplasm. The periblast was constituted of a layer with several nuclei and many vesicles, which grew during the epiboly movement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade-Talmelli, E.F., Kavamoto, E.T., Romagosa, E. & Fenerich-Verani, N. (2001). Embryonic and a larval development of the ‘Piabanha,’ Brycon insignis, Steindachner, 1876 (PISCES, CHARACIDAE). Boletim do Instituto de Pesca 27 (1), 2128.Google Scholar
Brummett, A.R. & Dumont, J.N. (1978). Kupffer's vesicle in Fundulus heteroclitus: a scanning and transmission electron microscope study. Tissue Cell 10, 1122.CrossRefGoogle ScholarPubMed
Cardoso, E. L., Alves, M.S.D., Ferreira, R.M.A. & Godinho, H. P. (1995). Embryogenesis of the neotropical freshwater siluriforme Pseudoplatystoma coruscans. Aquat Living Res. 8, 343346.CrossRefGoogle Scholar
Castagnolli, N. (1992). Criação de peixes de água doce. Jaboticabal: FUNEP.Google Scholar
Eckmann, R. (1984). Induced reproduction in Brycon cf. erythropterus. Aquaculture 38, 370382.CrossRefGoogle Scholar
Flores, J.C.B., Araiza, M.A.F. & Valle, M.R.G. (2002). Desarrollo embrionario de Ctenopharyngodon edellus (Carpa herbívora). [online], CIVA2002. Available from: http://www.civa2002.org, pp. 792–797.Google Scholar
Freire-Brasil, D. (2001). Análise estrutural e ultraestrutural da maturação final do ovócito, fertilização e primeira clivagem em curimbatá, Prochilodus lineatus Valenciennes, 1836. Doctor's degree. Universidade Estadual Paulista, Jaboticabal.Google Scholar
Freire-Brasil, D., Nakaghi, L.S.O., Santos, H.S.L., Grassiotto, I.Q. & Foresti, F. (2001). Estudo morfológico dos primeiros momentos da fertilização em curimbatá Prochilodus lineatus (Valenciennes, 1836). [online], CIVA 2002. Available from: http://www.civa2002.org, pp. 733–747.Google Scholar
Ganeco, L.N. (2003). Análise dos ovos de piracanjuba, Brycon orbignyanus (Valenciennes, 1849), durante a fertilização e o desenvolvimento embrionário, sob condições de reprodução induzida. Masters degree. Universidade de Estadual Paulista, Jaboticabal.Google Scholar
Goulding, M. (1980). The fishes of the forest: exploration in Amazonian Natural History. 280. Berkeley: University of California Press.CrossRefGoogle Scholar
Hisaoka, K.K. & Firlit, C.F. (1960) Further studies on the embryonic development of the zebrafish, Brachidanio rerio (Hamilton-Buchanan). J Morphol. 107, 205225.CrossRefGoogle Scholar
Iwamatsu, T. (2000). Fertilization in fishes. In: Fertilization in Protozoa and Metazoa Animals. Heidelberg: Springer-Verlag Berlin. pp. 89145.CrossRefGoogle Scholar
Iwamatsu, T. (1994). Stages of normal development in the medaka Oryzias latipes. Zool. Sci. 11, 825839.Google Scholar
Kimmel, C.B. & Law, R.D. (1995). Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncitial layer. Devel. Dynamics 203, 253310.CrossRefGoogle Scholar
Kobayashi, W. & Yamamoto, T. S. (1981). Fine structure of the micropylar apparatus of the chum salmon egg, with discussion of the mechanism for blocking polyspermy. J. Exp. Zool. 217, 265275.CrossRefGoogle Scholar
Laale, H.W. (1980). The perivitelline space and egg envelopes of body fishes: a review. Copeia 2, 210226.CrossRefGoogle Scholar
Lagler, K.F. (1959). Freshwater Fishery Biology. 2nd edn.Dubuque: WM.C. Brown Company. 421 pp.Google Scholar
Linhart, O. & Kudo, S. (1997). Surface ultrastructure of paddlefish egg before and after fertilization. J. Fish Biol. 51 (3), 573582.Google Scholar
Lopes, R.N.M., Senhorini, J. A. & Soares, M.C.F. (1995). Desenvolvimento embrionário e larval do matrinxã Brycon cephalus Gunther, 1869, (PISCES, CHARACIDAE). Boletim Técnico CEPTA 8, 2539.Google Scholar
Luz, R.K., Reynalte-Tataje, D.A., Ferreira, A.A. & Zaniboni-Fihlo, E. (2001). Desenvolvimento Embrionário e Estágios Larvais do Mandi-Amarelo, Pimelodus maculatus. Boletim do Instituto de Pesca 27 (1), 4955.Google Scholar
Morrison, C.M., Miyake, T. & Wright, Jr. J. (2001). Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces; Cichlidae). J. Morphol. 247, 172195.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Nakaghi, L.S.O., Marques, C., Paes, M.C.F, Faustino, F, Ganeco, L.N. & Senhorini, J.A. (2005). Análise do desenvolvimento embrionário do dourado (Salminus maxillosus) por meio de microscopia óptica. In Anais do 17 CONGRESSO DE INICIAÇÃO CIENTÍFICA, Jaboticabal.Google Scholar
Nelson, G. (1984). Peixes Amazônicos. Revista Brasileira de Zoologia 11, 2945.Google Scholar
Ninhaus-Silveira, A. (2004). Desenvolvimento embrionário e preservação criogênica de embriões do curimbatá, Prochilodus lineatus (Valencinnes, 1836) (Teleostei; Prochilodontidae). Doctor's degree. Universidade Estadual Paulista–IBB, Botucatu.Google Scholar
Ninhaus-Silveira, A., Foresti, F., Azevedo, A., Veríssimo-Silveira, R. & Senhorini, J.A. (2006a). Semen characterization, cryogenic preservation and fertility in matrinxã, Brycon cephalus (Günther, 1860) (TELEOSTEI; CHARACIDAE). Braz. Arch. Biol. Tech. 49 (4), 651659.Google Scholar
Ninhaus-Silveira, A., Foresti, F., Azevedo, A. (2006b). Structural and ultrastructural analysis of embryonic development of Prochilodus lineatus (Valenciennes, 1836) (Characiforme, Prochilodontinae). Zygote 14, 217229.CrossRefGoogle Scholar
Ohta, T. (1991). Initial stages of sperm–egg fusion in the freshwater teleost, Rhodeus ocellatus. The Anatomical Record 229 (2), 195202.CrossRefGoogle ScholarPubMed
Pereira Filho, M. (1994). Estudo desenvolvidos no INPA (Manaus-Amozonas) com o matrinchã, Brycon cephalus (Günther, 1869). In Anais do Seminário Sobre Criação Do Gênero Brycon – Cepta, pp. 25–30, Pirassununga.Google Scholar
Ribeiro, C.R., Leme dos Santos, H.S. & BOLZAN, A.A. (1995). Estudo comparativo da embriogênese de peixes ósseos (Pacu, Piaractus mesopotâmicus; Tambaqui, Colossoma macropomum e o híbrido Tambacu). Rev. Brás. Biol. 55 (1), 6578.Google Scholar
Riehl, R. (1980). Micropyle of some salmonids and coregonids. Env. Biol. Fishes. 5, 5966.CrossRefGoogle Scholar
Riehl, R. (1993). Surface Morphology and Micropyle as a Tool for Indentifying Fish Eggs by Scanning Electron Microscopy. Germany: University of Düsseldorf, pp. 2931.Google Scholar
Rizzo, E. (2001). Biologia de ovos de peixes neotropicais de água doce: estudos comparativo e experimental, com ênfase na análise de superfície do aparelho micropilar. Doctor's degree. Universidade Federal de Minas Gerais, Belo Horizonte.Google Scholar
Rizzo, E., Sato, Y., Barreto, B.P. & Godinho, H.P. (2002). Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J. Fish Biol. 61, 615632.CrossRefGoogle Scholar
Rizzo, E. & Bazzoli, N. (1993). Oogenesis, oocyte surface and micropylar apparatus of Prochilodus affinis Reinhardt, 1874 (Pisces Characiformes). Eur. Arch. Biol. 104, 16.Google Scholar
Romagosa, E., Narahara, M. Y. & Fenerich-Verani, N. (2001). Stages of embryonic development of the ‘matrixã,’ Brycon cephalus (Pisces, Characidae). Boletim do Instituto de Pesca 27 (1), 2732.Google Scholar
Shardo, J.D. (1995). Comparative Embryology of Teleostean Fishes. I. Development and Staging of the American Shad, Alosa sapidissima (Wilson, 1811). J. Morphol. 225, 125167.Google Scholar
Silveira, A.N. (2000). Caracterização espermática, preservação criogênica e fertilidade do matrinxã, Brycon cephalus (Günther, 1860) (Teleostei, Characidae). Masters degree. Universidade estadual paulista – IBB, Botucatu.Google Scholar
Woynarovich, E. & Hovárth, L. (1983). A propagação artificial de peixes de águas tropicais. 220p. Brasília: FAO/CODEVASF–CNPq.Google Scholar