Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T17:43:36.681Z Has data issue: false hasContentIssue false

Staurosporine advances interblastomeric flattening of the mouse embryo

Published online by Cambridge University Press:  26 September 2008

D. Michael O'Sullivan
Affiliation:
Department of Anatomy, University of Cambridge, Cambridge, UK.
Martin H. Johnson*
Affiliation:
Department of Anatomy, University of Cambridge, Cambridge, UK.
Josie M.L. McConnell
Affiliation:
Department of Anatomy, University of Cambridge, Cambridge, UK.
*
Professor M.H. Johnson, Embryo and Gamete Research Group, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK. Telephone: (0223) 333789. Fax: (0223) 333786.

Extract

Staurosporine, an inhibitor of protein kinase activity, causes premature intercellular flattening of blastomeres but does not induce their premature polarisation. The flattening induced is calcium dependent, is reversed transiently at mitosis and requires the continuing presence of the drug. Staurosporine also blocks the decompacting effect of phorbol ester on 8-cell embryos.

Type
Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloom, T. (1989). The effects of phorbol ester on mouse blastomeres: a role for protein kinase C in compaction? Development 106, 159–71.CrossRefGoogle ScholarPubMed
Bloom, T. (1991). Experimental manipulation of compaction of the mouse embryo alters patterns of protein phosphorylation. Mol. Reprod. Dev. 26, 230–44.CrossRefGoogle Scholar
Bloom, T. & McConnell, J. (1990). Changes in protein phosphorylation associated with compaction of the early mouse preimplantation embryo. Mol. Reprod. Dev. 26, 199210.CrossRefGoogle ScholarPubMed
Jefferson, A.B. & Schulman, H. (1988). Sphingosine inhibits calmodulindependent enzymes. J. Biol. Chem. 263, 15241–4.CrossRefGoogle ScholarPubMed
Johnson, M.H., Chisholm, J.C., Fleming, T.P. & Houliston, E. (1986a). A role for cytoplasmic determinants in the development of the mouse early embryo? J. Embryol. Exp. Morphol. (Suppl.) 97, 97121.Google ScholarPubMed
Johnson, M.H., Maro, B. & Takeichi, M. (1986b). The role of cell adhesion in the synchronisation and orientation of polarisation in 8-cell mouse blastomeres. J. Embryol. Exp. Morphol. 93, 239–55.Google ScholarPubMed
Kidder, G.M. & McLachlin, J.R. (1985). Timing of transcription and protein synthesis underlying morphogenesis in preimplantation mouse embryos. Dev. Biol. 112, 265–75.CrossRefGoogle ScholarPubMed
Levy, J.B., Johnson, M.H., Goodhall, H. & Maro, B. (1986). Control of the timing of compaction: a major developmental transition in mouse early development. J. Embryol. Exp. Morphol. 95, 213–37.Google Scholar
Nakadate, T., Yeng, A.Y. & Blumberg, P.M. (1988). Comparison of protein kinase C functional assays to clarify mechanism of inhibitor assay. Biochem. Pharmol 37, 1541–55.CrossRefGoogle Scholar
Nasr-Esfahani, M.N., Johnson, M.H. & Aitken, R.J. (1990). The effect of iron and iron chelators on the in vitro block to development of the mouse preimplantation embryo: BAT6, a new medium for improved culture of mouse embryos in vitro. Hum. Reprod. 5, 9971003.CrossRefGoogle ScholarPubMed
Nicolson, G.G., Yanagimachi, R. & Yanagimachi, H. (1975). Ultrastructural localisation of lectin binding sites of zonae pellucidae and plasma membranes of mammalian eggs. J. Cell Biol. 66, 263–74CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science 233, 305–12.CrossRefGoogle ScholarPubMed
Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661–5.CrossRefGoogle ScholarPubMed
Oishi, K., Zheng, B. & Kuo, J.F. (1990). Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulations sphingosine, lysophosphatidylcholine and olaic acid. J. Biol. Chem. 265, 70–5.CrossRefGoogle ScholarPubMed
Poueymirou, W.T. & Schultz, R.M. (1989). Regulation of mouse preimplantation development: inhibition of synthesis of proteins in the two-cell embryo that require transcription. Development 133, 588–99.Google ScholarPubMed
Sefton, M., Johnson, M.H. & Clayton, L.C. (1992). Synthesis and phosphorylarion of uvomorulin during mouse early development. Development 115, 313–18.CrossRefGoogle Scholar
Shirayoshi, Y., Okada, T.S. & Takeichi, M. (1983). The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarisation in early mouse development. Cell 35, 631–8.CrossRefGoogle ScholarPubMed
Smith, R.K.F. & Johnson, M.H. (1985).DNA replication and compaction in the cleaving embryo of the mouse. J. Embryol. Exp. Morphol. 89, 133–48.Google ScholarPubMed
Tamaoki, T. (1991). Use and specificity of staurosporine, UCN–01, and calphostin C as protein kinase inhibitors. Methods Enzymol 201, 340–7.CrossRefGoogle ScholarPubMed
Tamaoki, T., Nomoto, H., Takahashi, I., Yuzuru, K., Makoto, M. & Pusao, T. (1986). Staurosporine, a potent inhibitor or phospholipids/Ca++ dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397402.CrossRefGoogle ScholarPubMed
Yamamura, H. & Spindle, A. (1988). Stage-specific response of preimplantation mouse embryos to W-7, a calmodulin antagonist. J. Exp. Zool. 248, 4554.CrossRefGoogle Scholar
Yamamura, H., Ohsugi, M., Ohta, H., Naka, M. & Hidaka, H. (1987). Compaction-like aggregation of blastomeres by 1–oleoyl-2-acetylglycerol in mouse embryos. Jpn. Teratol. Abstr. 36, 445.Google Scholar
Yamamura, H., Ohta, H., Ohsuga, M., Takagishyi, Y. & Hidaka, H. (1989). Possible involvement of protein kinase C in compaction of preimplantation mouse embryos. Cell Differ. Dev. (Suppl.) 27, S119.CrossRefGoogle Scholar
Winkel, G.K., Ferguson, J.E., Takeichi, M. & Nuccitelli, R. (1990). Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo. Dev. Biol. 138, 115.CrossRefGoogle ScholarPubMed