Published online by Cambridge University Press: 01 May 2008
Sex identification in mammalian preimplantation embryos is a technique that is used currently for development of the embryo transfer industry for zootechnical animals and is, therefore, a resource for biodiversity preservation. The aim of the present study was to establish a rapid and reliable method for the sexing of preimplantation embryos in domestic cats. Here we describe the use of nested PCR identify Y chromosome-linked markers when starting from small amounts of DNA and test the method for the purpose of sexing different species of wild felids. To evaluate the efficiency of the primers, PCR analysis were performed first in blood samples of sex-known domestic cats. Cat embryos were produced both in vitro and in vivo and the blastocysts were biopsied. A Magnetic Resin System was used to capture a consistent amount of DNA from embryo biopsy and wild felid hairs. The results from nested PCR applied on cat blood that corresponded to the phenotypical sex. Nested PCR was also applied to 37 embryo biopsies and the final result was: 21 males and 16 females. Furthermore, β-actin was amplified in each sample, as a positive control for DNA presence. Subsequently, nested PCR was performed on blood and hair samples from some wild felines and again the genotyping results and phenotype sex corresponded. The data show that this method is a rapid and repeatable option for sex determination in domestic cat embryos and some wild felids and that a small amount of cells is sufficient to obtain a reliable result. This technique, therefore, affords investigators a new approach that they can insert in the safeguard programmes of felida biodiversity.